理解在线隐私——隐私可视化和隐私设计指南的系统回顾

Susanne Barth, D. Ionita, P. Hartel
{"title":"理解在线隐私——隐私可视化和隐私设计指南的系统回顾","authors":"Susanne Barth, D. Ionita, P. Hartel","doi":"10.1145/3502288","DOIUrl":null,"url":null,"abstract":"Privacy visualizations help users understand the privacy implications of using an online service. Privacy by Design guidelines provide generally accepted privacy standards for developers of online services. To obtain a comprehensive understanding of online privacy, we review established approaches, distill a unified list of 15 privacy attributes and rank them based on perceived importance by users and privacy experts. We then discuss similarities, explain notable differences, and examine trends in terms of the attributes covered. Finally, we show how our results provide a foundation for user-centric privacy visualizations, inspire best practices for developers, and give structure to privacy policies.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"75 1","pages":"1 - 37"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Understanding Online Privacy—A Systematic Review of Privacy Visualizations and Privacy by Design Guidelines\",\"authors\":\"Susanne Barth, D. Ionita, P. Hartel\",\"doi\":\"10.1145/3502288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy visualizations help users understand the privacy implications of using an online service. Privacy by Design guidelines provide generally accepted privacy standards for developers of online services. To obtain a comprehensive understanding of online privacy, we review established approaches, distill a unified list of 15 privacy attributes and rank them based on perceived importance by users and privacy experts. We then discuss similarities, explain notable differences, and examine trends in terms of the attributes covered. Finally, we show how our results provide a foundation for user-centric privacy visualizations, inspire best practices for developers, and give structure to privacy policies.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"75 1\",\"pages\":\"1 - 37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3502288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

隐私可视化帮助用户了解使用在线服务的隐私含义。隐私设计准则为在线服务的开发人员提供了普遍接受的隐私标准。为了全面了解在线隐私,我们回顾了已有的方法,提炼出15个隐私属性的统一列表,并根据用户和隐私专家的感知重要性对它们进行排名。然后,我们讨论相似之处,解释显著差异,并根据所涵盖的属性检查趋势。最后,我们展示了我们的结果如何为以用户为中心的隐私可视化提供基础,启发开发人员的最佳实践,并给出隐私策略的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Online Privacy—A Systematic Review of Privacy Visualizations and Privacy by Design Guidelines
Privacy visualizations help users understand the privacy implications of using an online service. Privacy by Design guidelines provide generally accepted privacy standards for developers of online services. To obtain a comprehensive understanding of online privacy, we review established approaches, distill a unified list of 15 privacy attributes and rank them based on perceived importance by users and privacy experts. We then discuss similarities, explain notable differences, and examine trends in terms of the attributes covered. Finally, we show how our results provide a foundation for user-centric privacy visualizations, inspire best practices for developers, and give structure to privacy policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Comparisons of Clustering Approaches for Data Representation On the Structure of the Boolean Satisfiability Problem: A Survey A Brief Overview of Universal Sentence Representation Methods: A Linguistic View The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-worn Extended Reality A Comprehensive Report on Machine Learning-based Early Detection of Alzheimer's Disease using Multi-modal Neuroimaging Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1