煤矿GPS沉陷监测技术及其应用

Wang Jian , Peng Xiangguo , Xu Chang hui
{"title":"煤矿GPS沉陷监测技术及其应用","authors":"Wang Jian ,&nbsp;Peng Xiangguo ,&nbsp;Xu Chang hui","doi":"10.1016/j.mstc.2011.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>We proved theoretically that geodetic height, measured with Global Positioning System (GPS), can be applied directly to monitor coal mine subsidence. Based on a Support Vector Machine (SVM) model, we built a regional geoid model with a Gaussian Radial Basis Function (RBF) and the technical scheme for GPS coal mine subsidence monitoring is presented to provide subsidence information for updating the regional Digital Elevation Model (DEM). The theory proposed was applied to monitor mining subsidence in an Inner Mongolia coal mine in China. The scheme established an accurate GPS reference network and a comprehensive leveling conjunction provided the normal height of all GPS control points. According to the case study, the SVM model to establish geoid-model is better than a polynomial fit or a Genetic Algorithm based Back Propagation (GA-BP) neural network. GPS-RTK measurements of coal mine subsidence information can be quickly acquired for updating the DEM.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 4","pages":"Pages 463-467"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.06.001","citationCount":"27","resultStr":"{\"title\":\"Coal mining GPS subsidence monitoring technology and its application\",\"authors\":\"Wang Jian ,&nbsp;Peng Xiangguo ,&nbsp;Xu Chang hui\",\"doi\":\"10.1016/j.mstc.2011.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We proved theoretically that geodetic height, measured with Global Positioning System (GPS), can be applied directly to monitor coal mine subsidence. Based on a Support Vector Machine (SVM) model, we built a regional geoid model with a Gaussian Radial Basis Function (RBF) and the technical scheme for GPS coal mine subsidence monitoring is presented to provide subsidence information for updating the regional Digital Elevation Model (DEM). The theory proposed was applied to monitor mining subsidence in an Inner Mongolia coal mine in China. The scheme established an accurate GPS reference network and a comprehensive leveling conjunction provided the normal height of all GPS control points. According to the case study, the SVM model to establish geoid-model is better than a polynomial fit or a Genetic Algorithm based Back Propagation (GA-BP) neural network. GPS-RTK measurements of coal mine subsidence information can be quickly acquired for updating the DEM.</p></div>\",\"PeriodicalId\":100930,\"journal\":{\"name\":\"Mining Science and Technology (China)\",\"volume\":\"21 4\",\"pages\":\"Pages 463-467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mstc.2011.06.001\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining Science and Technology (China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674526411000755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Science and Technology (China)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674526411000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

从理论上证明了GPS测量的大地高度可以直接用于煤矿沉陷监测。在支持向量机(SVM)模型的基础上,利用高斯径向基函数(RBF)建立了区域大地水准面模型,提出了GPS煤矿沉陷监测技术方案,为更新区域数字高程模型(DEM)提供沉陷信息。并将该理论应用于内蒙古某煤矿开采沉陷监测。该方案建立了精确的GPS参考网,并提供了所有GPS控制点的法向高度。实例研究表明,SVM模型建立大地水准面模型优于多项式拟合或基于遗传算法的反向传播(GA-BP)神经网络。GPS-RTK可快速获取煤矿沉陷信息,用于DEM更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coal mining GPS subsidence monitoring technology and its application

We proved theoretically that geodetic height, measured with Global Positioning System (GPS), can be applied directly to monitor coal mine subsidence. Based on a Support Vector Machine (SVM) model, we built a regional geoid model with a Gaussian Radial Basis Function (RBF) and the technical scheme for GPS coal mine subsidence monitoring is presented to provide subsidence information for updating the regional Digital Elevation Model (DEM). The theory proposed was applied to monitor mining subsidence in an Inner Mongolia coal mine in China. The scheme established an accurate GPS reference network and a comprehensive leveling conjunction provided the normal height of all GPS control points. According to the case study, the SVM model to establish geoid-model is better than a polynomial fit or a Genetic Algorithm based Back Propagation (GA-BP) neural network. GPS-RTK measurements of coal mine subsidence information can be quickly acquired for updating the DEM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An experimental study of a yielding support for roadways constructed in deep broken soft rock under high stress Simulation experiment on anti-penetration capability of anchored rock mass An energy efficiency clustering routing protocol for WSNs in confined area Effects of strain rates on mechanical properties of limestone under high temperature Influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1