基于粒子群优化技术的分数阶动力系统参数辨识

D. Maiti, R. Janarthanan, A. Konar
{"title":"基于粒子群优化技术的分数阶动力系统参数辨识","authors":"D. Maiti, R. Janarthanan, A. Konar","doi":"10.1109/TENCON.2008.4766861","DOIUrl":null,"url":null,"abstract":"This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Accurate estimation is particularly important for systems having varying parameters, which is the usual case with physical processes. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed in this paper. A population of process models is generated and updated by PSO technique, the fitness function being the sum of squared deviations from the actual set of observations. Results show that the proposed scheme offers a high degree of accuracy.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parameter identification of a fractional order dynamical system using particle swarm optimization technique\",\"authors\":\"D. Maiti, R. Janarthanan, A. Konar\",\"doi\":\"10.1109/TENCON.2008.4766861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Accurate estimation is particularly important for systems having varying parameters, which is the usual case with physical processes. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed in this paper. A population of process models is generated and updated by PSO technique, the fitness function being the sum of squared deviations from the actual set of observations. Results show that the proposed scheme offers a high degree of accuracy.\",\"PeriodicalId\":22230,\"journal\":{\"name\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2008.4766861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

这个贡献涉及分数阶动力系统的识别。系统辨识是指过程参数的估计,在控制理论中是必要的。准确的估计对于具有变化参数的系统尤其重要,这是物理过程的常见情况。实际过程通常是分数阶的,而不是理想的积分阶模型。本文提出了一种简单而优雅的估计分数阶过程参数的方法。通过粒子群算法生成和更新过程模型的总体,适应度函数为与实际观测值集的偏差平方和。结果表明,该方案具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter identification of a fractional order dynamical system using particle swarm optimization technique
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Accurate estimation is particularly important for systems having varying parameters, which is the usual case with physical processes. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed in this paper. A population of process models is generated and updated by PSO technique, the fitness function being the sum of squared deviations from the actual set of observations. Results show that the proposed scheme offers a high degree of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measured impedance by distance relay for inter phase faults in presence of SSSC on a double circuit transmission line A parallel architecture for successive elimination block matching algorithm An RNS based transform architecture for H.264/AVC Routing protocol enhancement for handling node mobility in wireless sensor networks MPEG-21-based scalable bitstream adaptation using medium grain scalability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1