{"title":"电介质光谱法研究线性和交联聚酯聚氨酯的分子动力学","authors":"S. Oprea, V. Musteata, V. Potolinca","doi":"10.1177/0095244311413645","DOIUrl":null,"url":null,"abstract":"The molecular dynamics of crosslinked polyurethanes have been studied by dielectric spectroscopy and compared with the dynamics of linear polyurethanes. Two local relaxations, γ and β, and a primary relaxation, α, were observed for all the samples, appearing in relation with the increase in temperature. The conductivity was studied at temperatures higher than the glass transition temperature and it was found to decrease with the increasing content of crosslinker. The presence of crosslinks strongly influences their dielectric properties, especially in the elastic state. The linear polyurethane exhibits the lowest α-relaxation temperature. For the crosslinked samples, α-relaxation temperature increases with increase in the amount of crosslinkers; β- and γ-relaxations are less affected by chemical crosslinking and their activation energies are in the ranges 40–55 and 34–37 kJ/mol, respectively. For the linear polyurethane, there is an exception in the case of the γ-relaxation, which has a higher activation energy determined by its physical crosslinks. Conductivity analysis reveals a high mobility of charge carriers and low barriers for the transport of the charged particles. Also, the conductivity process is dependent on the segmental mobility of polymers.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"203 1","pages":"559 - 576"},"PeriodicalIF":1.4000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Molecular Dynamics of Linear and Crosslinked Polyester Urethanes Studied by Dielectric Spectroscopy\",\"authors\":\"S. Oprea, V. Musteata, V. Potolinca\",\"doi\":\"10.1177/0095244311413645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The molecular dynamics of crosslinked polyurethanes have been studied by dielectric spectroscopy and compared with the dynamics of linear polyurethanes. Two local relaxations, γ and β, and a primary relaxation, α, were observed for all the samples, appearing in relation with the increase in temperature. The conductivity was studied at temperatures higher than the glass transition temperature and it was found to decrease with the increasing content of crosslinker. The presence of crosslinks strongly influences their dielectric properties, especially in the elastic state. The linear polyurethane exhibits the lowest α-relaxation temperature. For the crosslinked samples, α-relaxation temperature increases with increase in the amount of crosslinkers; β- and γ-relaxations are less affected by chemical crosslinking and their activation energies are in the ranges 40–55 and 34–37 kJ/mol, respectively. For the linear polyurethane, there is an exception in the case of the γ-relaxation, which has a higher activation energy determined by its physical crosslinks. Conductivity analysis reveals a high mobility of charge carriers and low barriers for the transport of the charged particles. Also, the conductivity process is dependent on the segmental mobility of polymers.\",\"PeriodicalId\":15644,\"journal\":{\"name\":\"Journal of Elastomers and Plastics\",\"volume\":\"203 1\",\"pages\":\"559 - 576\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elastomers and Plastics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/0095244311413645\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers and Plastics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/0095244311413645","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular Dynamics of Linear and Crosslinked Polyester Urethanes Studied by Dielectric Spectroscopy
The molecular dynamics of crosslinked polyurethanes have been studied by dielectric spectroscopy and compared with the dynamics of linear polyurethanes. Two local relaxations, γ and β, and a primary relaxation, α, were observed for all the samples, appearing in relation with the increase in temperature. The conductivity was studied at temperatures higher than the glass transition temperature and it was found to decrease with the increasing content of crosslinker. The presence of crosslinks strongly influences their dielectric properties, especially in the elastic state. The linear polyurethane exhibits the lowest α-relaxation temperature. For the crosslinked samples, α-relaxation temperature increases with increase in the amount of crosslinkers; β- and γ-relaxations are less affected by chemical crosslinking and their activation energies are in the ranges 40–55 and 34–37 kJ/mol, respectively. For the linear polyurethane, there is an exception in the case of the γ-relaxation, which has a higher activation energy determined by its physical crosslinks. Conductivity analysis reveals a high mobility of charge carriers and low barriers for the transport of the charged particles. Also, the conductivity process is dependent on the segmental mobility of polymers.
期刊介绍:
The Journal of Elastomers and Plastics is a high quality peer-reviewed journal which publishes original research on the development and marketing of elastomers and plastics and the area in between where the characteristics of both extremes are apparent. The journal covers: advances in chemistry, processing, properties and applications; new information on thermoplastic elastomers, reinforced elastomers, natural rubbers, blends and alloys, and fillers and additives.