文本到图像的翻译使用GAN与NLP和计算机视觉

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Periodico Di Mineralogia Pub Date : 2022-04-01 DOI:10.37896/pd91.4/91449
R. Perumalraja., A. S. Arjunkumar, N. N. Mohamed, E. Siva, S. Kamalesh
{"title":"文本到图像的翻译使用GAN与NLP和计算机视觉","authors":"R. Perumalraja., A. S. Arjunkumar, N. N. Mohamed, E. Siva, S. Kamalesh","doi":"10.37896/pd91.4/91449","DOIUrl":null,"url":null,"abstract":"Generating high-quality images from text queries is a challenging problem in computer vision and has many practical applications. This paper proposes Stacked Generative Adversarial Networks (StackGAN) to generate 256 x 256 photo-realistic images conditioned on text descriptions. We resolve the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN gives the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN uses Stage-I results and text descriptions as inputs and generates high-resolution images with photorealistic details. It can correct defects in Stage-I results and add compelling details to the refinement process. To improve the generated images' variety and regulate the conditional-GAN training, we introduce a novel Conditioning Augmentation technique. Various experiments and comparisons with state-of-the-art benchmark datasets demonstrate that the proposed method achieves significant improvements in generating photo-realistic images conditioned on text queries.","PeriodicalId":20006,"journal":{"name":"Periodico Di Mineralogia","volume":"30 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text to Image Translation using GAN with NLP and Computer Vision\",\"authors\":\"R. Perumalraja., A. S. Arjunkumar, N. N. Mohamed, E. Siva, S. Kamalesh\",\"doi\":\"10.37896/pd91.4/91449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating high-quality images from text queries is a challenging problem in computer vision and has many practical applications. This paper proposes Stacked Generative Adversarial Networks (StackGAN) to generate 256 x 256 photo-realistic images conditioned on text descriptions. We resolve the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN gives the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN uses Stage-I results and text descriptions as inputs and generates high-resolution images with photorealistic details. It can correct defects in Stage-I results and add compelling details to the refinement process. To improve the generated images' variety and regulate the conditional-GAN training, we introduce a novel Conditioning Augmentation technique. Various experiments and comparisons with state-of-the-art benchmark datasets demonstrate that the proposed method achieves significant improvements in generating photo-realistic images conditioned on text queries.\",\"PeriodicalId\":20006,\"journal\":{\"name\":\"Periodico Di Mineralogia\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodico Di Mineralogia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.37896/pd91.4/91449\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Di Mineralogia","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.37896/pd91.4/91449","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

从文本查询中生成高质量图像是计算机视觉中的一个具有挑战性的问题,并且具有许多实际应用。本文提出了堆叠生成对抗网络(StackGAN)来生成256 × 256的基于文本描述的逼真图像。我们通过草图细化过程将难题分解为更易于管理的子问题。第一阶段的GAN根据给定的文本描述给出物体的原始形状和颜色,生成第一阶段的低分辨率图像。第二阶段GAN使用第一阶段的结果和文本描述作为输入,并生成具有逼真细节的高分辨率图像。它可以纠正第一阶段结果中的缺陷,并在细化过程中添加引人注目的细节。为了提高生成图像的多样性和调节条件gan训练,我们引入了一种新的条件增强技术。各种实验和与最先进的基准数据集的比较表明,该方法在生成以文本查询为条件的逼真图像方面取得了显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text to Image Translation using GAN with NLP and Computer Vision
Generating high-quality images from text queries is a challenging problem in computer vision and has many practical applications. This paper proposes Stacked Generative Adversarial Networks (StackGAN) to generate 256 x 256 photo-realistic images conditioned on text descriptions. We resolve the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN gives the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN uses Stage-I results and text descriptions as inputs and generates high-resolution images with photorealistic details. It can correct defects in Stage-I results and add compelling details to the refinement process. To improve the generated images' variety and regulate the conditional-GAN training, we introduce a novel Conditioning Augmentation technique. Various experiments and comparisons with state-of-the-art benchmark datasets demonstrate that the proposed method achieves significant improvements in generating photo-realistic images conditioned on text queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodico Di Mineralogia
Periodico Di Mineralogia 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
>12 weeks
期刊介绍: Periodico di Mineralogia is an international peer-reviewed Open Access journal publishing Research Articles, Letters and Reviews in Mineralogy, Crystallography, Geochemistry, Ore Deposits, Petrology, Volcanology and applied topics on Environment, Archaeometry and Cultural Heritage. The journal aims at encouraging scientists to publish their experimental and theoretical results in as much detail as possible. Accordingly, there is no restriction on article length. Additional data may be hosted on the web sites as Supplementary Information. The journal does not have article submission and processing charges. Colour is free of charges both on line and printed and no Open Access fees are requested. Short publication time is assured. Periodico di Mineralogia is property of Sapienza Università di Roma and is published, both online and printed, three times a year.
期刊最新文献
FEATURE BASED CANCER DETECTION FROM QIN BREAST DCE-MRI IMAGES MATLAB ASSISTED SURFACE MORPHOLOGIES OF PURE AND DOPED ZNO USING IMAGE PROCESSING AND PHOTOCATALYTIC DEGRADATION A G-C3N4/ZNO HETEROSTRUCTURE NANOCOMPOSITE PHOTOCATALYST ACTIVITY AGAINST METHYLENE BLUE DYE UNDER VISIBLE LIGHT IRRADIATION MEDIATION EFFECT OF FINANCIAL SELF-EFFICACY ON INVESTMENT INTENTION OF REAL ESTATE INVESTORS – USING STRUCTURAL EQUATION MODELLING Defect induced room temperature ferromagnetism in undoped ZnO and Zn1−x-yAlxZyO (Z=Mg/Ni) Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1