Efthimia Kafali, N. Vretos, T. Semertzidis, P. Daras
{"title":"RobusterNet:利用基于volterra的卷积改进Copy-Move伪造检测","authors":"Efthimia Kafali, N. Vretos, T. Semertzidis, P. Daras","doi":"10.1109/ICPR48806.2021.9412587","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) have recently been introduced for addressing copy-move forgery detection (CMFD). However, current CMFD CNN-based approaches have insufficient performance commitment regarding the localization of the positive class. In this paper, this issue is explored by considering both linear and nonlinear interactions between pixels. A nonlinear Inception module based on second-order Volterra kernels is proposed, in order to ameliorate the results of a state-of-the-art CMFD architecture. The outcome of this work shows that a combination of linear and nonlinear convolution kernels can make the input foreground and background pixels more separable. The proposed approach is evaluated on CASIA and CoMoFoD, two publicly available CMFD datasets, and results to an improved positive class localization performance. Moreover, the findings of the proposed method imply that the nonlinear Inception module stimulates immense robustness against miscellaneous post processing attacks.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"34 1","pages":"1160-1165"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RobusterNet: Improving Copy-Move Forgery Detection with Volterra-based Convolutions\",\"authors\":\"Efthimia Kafali, N. Vretos, T. Semertzidis, P. Daras\",\"doi\":\"10.1109/ICPR48806.2021.9412587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) have recently been introduced for addressing copy-move forgery detection (CMFD). However, current CMFD CNN-based approaches have insufficient performance commitment regarding the localization of the positive class. In this paper, this issue is explored by considering both linear and nonlinear interactions between pixels. A nonlinear Inception module based on second-order Volterra kernels is proposed, in order to ameliorate the results of a state-of-the-art CMFD architecture. The outcome of this work shows that a combination of linear and nonlinear convolution kernels can make the input foreground and background pixels more separable. The proposed approach is evaluated on CASIA and CoMoFoD, two publicly available CMFD datasets, and results to an improved positive class localization performance. Moreover, the findings of the proposed method imply that the nonlinear Inception module stimulates immense robustness against miscellaneous post processing attacks.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"34 1\",\"pages\":\"1160-1165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9412587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RobusterNet: Improving Copy-Move Forgery Detection with Volterra-based Convolutions
Convolutional Neural Networks (CNNs) have recently been introduced for addressing copy-move forgery detection (CMFD). However, current CMFD CNN-based approaches have insufficient performance commitment regarding the localization of the positive class. In this paper, this issue is explored by considering both linear and nonlinear interactions between pixels. A nonlinear Inception module based on second-order Volterra kernels is proposed, in order to ameliorate the results of a state-of-the-art CMFD architecture. The outcome of this work shows that a combination of linear and nonlinear convolution kernels can make the input foreground and background pixels more separable. The proposed approach is evaluated on CASIA and CoMoFoD, two publicly available CMFD datasets, and results to an improved positive class localization performance. Moreover, the findings of the proposed method imply that the nonlinear Inception module stimulates immense robustness against miscellaneous post processing attacks.