一种具有指数时间依赖学习效应的流水车间调度求解方法

Lingxuan Liu, Hongyu L. He, Leyuan Shi
{"title":"一种具有指数时间依赖学习效应的流水车间调度求解方法","authors":"Lingxuan Liu, Hongyu L. He, Leyuan Shi","doi":"10.1109/COASE.2019.8843150","DOIUrl":null,"url":null,"abstract":"This paper addresses a flow shop scheduling problem with a sum-of-process-times based learning effect. The objective is to find schedules that can minimize the maximum completion time. For constructing a solution framework, we propose a new random-sampling-based solution procedure called Bounds-based Nested Partition (BBNP). In order to enhance the effectiveness of BBNP, we develop a composite bound for guidance. Two heuristic algorithms are conducted with worst-case analysis as benchmarks. Numerical results show that the BBNP algorithm outperforms benchmark algorithms.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"76 1","pages":"468-473"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new solution approach for flow shop scheduling with an exponential time-dependent learning effect\",\"authors\":\"Lingxuan Liu, Hongyu L. He, Leyuan Shi\",\"doi\":\"10.1109/COASE.2019.8843150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a flow shop scheduling problem with a sum-of-process-times based learning effect. The objective is to find schedules that can minimize the maximum completion time. For constructing a solution framework, we propose a new random-sampling-based solution procedure called Bounds-based Nested Partition (BBNP). In order to enhance the effectiveness of BBNP, we develop a composite bound for guidance. Two heuristic algorithms are conducted with worst-case analysis as benchmarks. Numerical results show that the BBNP algorithm outperforms benchmark algorithms.\",\"PeriodicalId\":6695,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"76 1\",\"pages\":\"468-473\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2019.8843150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一个基于过程时间和学习效果的流水车间调度问题。目标是找到可以最小化最大完成时间的时间表。为了构造一个求解框架,我们提出了一种新的基于随机抽样的求解过程,称为基于边界的嵌套分区(BBNP)。为了提高BBNP的有效性,我们开发了一种复合约束来指导BBNP。以最坏情况分析为基准,进行了两种启发式算法。数值结果表明,BBNP算法优于基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new solution approach for flow shop scheduling with an exponential time-dependent learning effect
This paper addresses a flow shop scheduling problem with a sum-of-process-times based learning effect. The objective is to find schedules that can minimize the maximum completion time. For constructing a solution framework, we propose a new random-sampling-based solution procedure called Bounds-based Nested Partition (BBNP). In order to enhance the effectiveness of BBNP, we develop a composite bound for guidance. Two heuristic algorithms are conducted with worst-case analysis as benchmarks. Numerical results show that the BBNP algorithm outperforms benchmark algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed mapping method for aligning machine execution data to numerical control code optimizing outpatient Department Staffing Level using Multi-Fidelity Models Advanced Sensor and Target Development to Support Robot Accuracy Degradation Assessment Multi-Task Hierarchical Imitation Learning for Home Automation Deep Reinforcement Learning of Robotic Precision Insertion Skill Accelerated by Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1