基于预训练神经网络的股价预测模型比较

C. Anand
{"title":"基于预训练神经网络的股价预测模型比较","authors":"C. Anand","doi":"10.36548/JUCCT.2021.2.005","DOIUrl":null,"url":null,"abstract":"Several intelligent data mining approaches, including neural networks, have been widely employed by academics during the last decade. In today's rapidly evolving economy, stock market data prediction and analysis play a significant role. Several non-linear models like neural network, generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional heteroscedasticity (ARCH) as well as linear models like Auto-Regressive Integrated Moving Average (ARIMA), Moving Average (MA) and Auto Regressive (AR) may be used for stock forecasting. The deep learning architectures inclusive of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) are used in this paper for stock price prediction of an organization by using the previously available stock prices. The National Stock Exchange (NSE) of India dataset is used for training the model with day-wise closing price. Data prediction is performed for a few sample companies selected on a random basis. Based on the comparison results, it is evident that the existing models are outperformed by CNN. The network can also perform stock predictions for other stock markets despite being trained with single market data as a common inner dynamics that has been shared between certain stock markets. When compared to the existing linear models, the neural network model outperforms them in a significant manner, which can be observed from the comparison results.","PeriodicalId":11002,"journal":{"name":"Day 1 Tue, March 23, 2021","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Comparison of Stock Price Prediction Models using Pre-trained Neural Networks\",\"authors\":\"C. Anand\",\"doi\":\"10.36548/JUCCT.2021.2.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several intelligent data mining approaches, including neural networks, have been widely employed by academics during the last decade. In today's rapidly evolving economy, stock market data prediction and analysis play a significant role. Several non-linear models like neural network, generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional heteroscedasticity (ARCH) as well as linear models like Auto-Regressive Integrated Moving Average (ARIMA), Moving Average (MA) and Auto Regressive (AR) may be used for stock forecasting. The deep learning architectures inclusive of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) are used in this paper for stock price prediction of an organization by using the previously available stock prices. The National Stock Exchange (NSE) of India dataset is used for training the model with day-wise closing price. Data prediction is performed for a few sample companies selected on a random basis. Based on the comparison results, it is evident that the existing models are outperformed by CNN. The network can also perform stock predictions for other stock markets despite being trained with single market data as a common inner dynamics that has been shared between certain stock markets. When compared to the existing linear models, the neural network model outperforms them in a significant manner, which can be observed from the comparison results.\",\"PeriodicalId\":11002,\"journal\":{\"name\":\"Day 1 Tue, March 23, 2021\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, March 23, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/JUCCT.2021.2.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, March 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/JUCCT.2021.2.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

包括神经网络在内的几种智能数据挖掘方法在过去十年中被学术界广泛采用。在经济快速发展的今天,股票市场数据预测和分析发挥着重要作用。一些非线性模型如神经网络、广义自回归条件异方差(GARCH)和自回归条件异方差(ARCH)以及线性模型如自回归综合移动平均(ARIMA)、移动平均(MA)和自回归(AR)可用于股票预测。本文使用卷积神经网络(CNN)、长短期记忆(LSTM)、循环神经网络(RNN)、多层感知器(MLP)和支持向量机(SVM)等深度学习架构,通过使用先前可用的股票价格对组织进行股票价格预测。使用印度国家证券交易所(NSE)数据集训练具有日收盘价的模型。对随机选择的几个样本公司进行数据预测。从对比结果可以看出,现有模型的性能明显优于CNN。该网络还可以对其他股票市场进行股票预测,尽管它是用单一市场数据作为某些股票市场之间共享的共同内部动态进行训练的。与现有的线性模型相比,神经网络模型的表现明显优于线性模型,这从对比结果中可以看出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Stock Price Prediction Models using Pre-trained Neural Networks
Several intelligent data mining approaches, including neural networks, have been widely employed by academics during the last decade. In today's rapidly evolving economy, stock market data prediction and analysis play a significant role. Several non-linear models like neural network, generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional heteroscedasticity (ARCH) as well as linear models like Auto-Regressive Integrated Moving Average (ARIMA), Moving Average (MA) and Auto Regressive (AR) may be used for stock forecasting. The deep learning architectures inclusive of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) are used in this paper for stock price prediction of an organization by using the previously available stock prices. The National Stock Exchange (NSE) of India dataset is used for training the model with day-wise closing price. Data prediction is performed for a few sample companies selected on a random basis. Based on the comparison results, it is evident that the existing models are outperformed by CNN. The network can also perform stock predictions for other stock markets despite being trained with single market data as a common inner dynamics that has been shared between certain stock markets. When compared to the existing linear models, the neural network model outperforms them in a significant manner, which can be observed from the comparison results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design an Adaptive Hybrid Approach for Genetic Algorithm to Detect Effective Malware Detection in Android Division Comparison of Stock Price Prediction Models using Pre-trained Neural Networks Efficient Two Stage Identification for Face mask detection using Multiclass Deep Learning Approach Blockchain Framework for Communication between Vehicle through IoT Devices and Sensors Machine Learning Algorithms Performance Analysis for VLSI IC Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1