用x射线衍射测定绝对构型

Q2 Chemistry Tetrahedron, asymmetry Pub Date : 2017-10-15 DOI:10.1016/j.tetasy.2017.08.018
Simon Parsons
{"title":"用x射线衍射测定绝对构型","authors":"Simon Parsons","doi":"10.1016/j.tetasy.2017.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>Methods for determination of absolute structure using X-ray crystallography are described, with an emphasis on applications for absolute configuration assignment of enantiopure light-atom organic compounds. The ability to distinguish between alternative absolute structures by X-ray crystallography is the result of a physical phenomenon called resonant scattering, which introduces small deviations from the inherent inversion symmetry of single-crystal X-ray diffraction patterns. The magnitude of the effect depends on the elements present in the crystal and the wavelength of the X-rays used to collect the diffraction data, but it is always very weak for crystals of compounds containing no element heavier than oxygen. The precision of absolute structure determination by conventional least squares refinement appears to be unduly pessimistic for light-atom materials. Recent developments based on Bijvoet differences, quotients and Bayesian statistics enable better and more realistic precision to be obtained. The new methods are sensitive to statistical outliers, and techniques for identifying these are summarised.</p></div>","PeriodicalId":22237,"journal":{"name":"Tetrahedron, asymmetry","volume":"28 10","pages":"Pages 1304-1313"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tetasy.2017.08.018","citationCount":"39","resultStr":"{\"title\":\"Determination of absolute configuration using X-ray diffraction\",\"authors\":\"Simon Parsons\",\"doi\":\"10.1016/j.tetasy.2017.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Methods for determination of absolute structure using X-ray crystallography are described, with an emphasis on applications for absolute configuration assignment of enantiopure light-atom organic compounds. The ability to distinguish between alternative absolute structures by X-ray crystallography is the result of a physical phenomenon called resonant scattering, which introduces small deviations from the inherent inversion symmetry of single-crystal X-ray diffraction patterns. The magnitude of the effect depends on the elements present in the crystal and the wavelength of the X-rays used to collect the diffraction data, but it is always very weak for crystals of compounds containing no element heavier than oxygen. The precision of absolute structure determination by conventional least squares refinement appears to be unduly pessimistic for light-atom materials. Recent developments based on Bijvoet differences, quotients and Bayesian statistics enable better and more realistic precision to be obtained. The new methods are sensitive to statistical outliers, and techniques for identifying these are summarised.</p></div>\",\"PeriodicalId\":22237,\"journal\":{\"name\":\"Tetrahedron, asymmetry\",\"volume\":\"28 10\",\"pages\":\"Pages 1304-1313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.tetasy.2017.08.018\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron, asymmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957416617303646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron, asymmetry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957416617303646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 39

摘要

描述了用x射线晶体学测定绝对结构的方法,重点介绍了对映纯光原子有机化合物绝对构型分配的应用。通过x射线晶体学区分不同绝对结构的能力是一种被称为共振散射的物理现象的结果,它引入了与单晶x射线衍射模式固有的反转对称性的小偏差。这种效应的大小取决于晶体中存在的元素和用来收集衍射数据的x射线的波长,但对于不含比氧重的元素的化合物晶体来说,这种效应总是很弱。对于光原子材料,用传统的最小二乘精算确定绝对结构的精度显得过于悲观。基于Bijvoet差异、商和贝叶斯统计的最新发展使获得更好和更现实的精度成为可能。新方法对统计异常值敏感,并总结了识别这些异常值的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of absolute configuration using X-ray diffraction

Methods for determination of absolute structure using X-ray crystallography are described, with an emphasis on applications for absolute configuration assignment of enantiopure light-atom organic compounds. The ability to distinguish between alternative absolute structures by X-ray crystallography is the result of a physical phenomenon called resonant scattering, which introduces small deviations from the inherent inversion symmetry of single-crystal X-ray diffraction patterns. The magnitude of the effect depends on the elements present in the crystal and the wavelength of the X-rays used to collect the diffraction data, but it is always very weak for crystals of compounds containing no element heavier than oxygen. The precision of absolute structure determination by conventional least squares refinement appears to be unduly pessimistic for light-atom materials. Recent developments based on Bijvoet differences, quotients and Bayesian statistics enable better and more realistic precision to be obtained. The new methods are sensitive to statistical outliers, and techniques for identifying these are summarised.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tetrahedron, asymmetry
Tetrahedron, asymmetry 化学-无机化学与核化学
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Cessation. Tetrahedron: Asymmetry presents experimental or theoretical research results of outstanding significance and timeliness on asymmetry in organic, inorganic, organometallic and physical chemistry, as well as its application to related disciplines, especially bio-organic chemistry. The journal publishes critical reviews, original research articles and preliminary communications dealing with all aspects of the chemical, physical and theoretical properties of non-racemic organic and inorganic materials and processes. Topics relevant to the journal include: the physico-chemical and biological properties of enantiomers; strategies and methodologies of asymmetric synthesis; resolution; chirality recognition and enhancement; analytical techniques for assessing enantiomeric purity and the unambiguous determination of absolute configuration; and molecular graphics and modelling methods for interpreting and predicting asymmetric phenomena. Papers describing the synthesis or properties of non-racemic molecules will be required to include a separate statement in the form of a Stereochemistry Abstract, for publication in the same issue, of the criteria used for the assignment of configuration and enantiomeric purity.
期刊最新文献
Graphical contents list Editorial board Contributors to this issue Nucleophilic substitution at phosphorus: stereochemistry and mechanisms Enantioselective synthesis of chiral 4H-pyran derivatives through [3+3] tandem reaction over a squaramide catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1