碱性环境下玄武岩钢筋耐久性研究

Leong Yee Foon, Rokiah Binti Othman, R. Jaya, M. Sulaiman, Y. Duraisamy
{"title":"碱性环境下玄武岩钢筋耐久性研究","authors":"Leong Yee Foon, Rokiah Binti Othman, R. Jaya, M. Sulaiman, Y. Duraisamy","doi":"10.4028/p-hr94qc","DOIUrl":null,"url":null,"abstract":"Basalt Fibre Reinforced Polymer (BRRP) is a new composite material made from basalt fibre, and resin matrix. It has been introduced to replace steel rebars as the main component of reinforced concrete structures because of their corrosion resistance under aggressive environments. This study investigates the mechanical properties of BFRP and the degradation state exposed to the alkaline environment and compares the corrosion rate with steel rebars. The flexural strength properties are tested as the parameter of mechanical properties. The results show that the flexural strength of BFRP is affected by immersion time (100h, 500h, 1000h) significantly. SEM results show mechanism of corrosion state that cracked resin matrix occurred and EDS results indicate the percentage components especially silicon elements that detected increased after corroded. This research identifies a current knowledge gap and can be serve as a reference point for further studies on the properties of BFRP bars to replace steel bars for safe and economic reinforced concrete structures in alkaline environments.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durability of Basalt Rebars under Alkaline Environment\",\"authors\":\"Leong Yee Foon, Rokiah Binti Othman, R. Jaya, M. Sulaiman, Y. Duraisamy\",\"doi\":\"10.4028/p-hr94qc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Basalt Fibre Reinforced Polymer (BRRP) is a new composite material made from basalt fibre, and resin matrix. It has been introduced to replace steel rebars as the main component of reinforced concrete structures because of their corrosion resistance under aggressive environments. This study investigates the mechanical properties of BFRP and the degradation state exposed to the alkaline environment and compares the corrosion rate with steel rebars. The flexural strength properties are tested as the parameter of mechanical properties. The results show that the flexural strength of BFRP is affected by immersion time (100h, 500h, 1000h) significantly. SEM results show mechanism of corrosion state that cracked resin matrix occurred and EDS results indicate the percentage components especially silicon elements that detected increased after corroded. This research identifies a current knowledge gap and can be serve as a reference point for further studies on the properties of BFRP bars to replace steel bars for safe and economic reinforced concrete structures in alkaline environments.\",\"PeriodicalId\":10603,\"journal\":{\"name\":\"Construction Technologies and Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Technologies and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-hr94qc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-hr94qc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

玄武岩纤维增强聚合物(BRRP)是一种以玄武岩纤维和树脂为基体制备的新型复合材料。由于其在恶劣环境下的耐腐蚀性,它已被引入以取代钢筋作为钢筋混凝土结构的主要组成部分。本研究考察了BFRP的力学性能及其在碱性环境下的降解状态,并与钢筋的腐蚀速率进行了比较。将抗弯强度作为力学性能参数进行测试。结果表明:浸水时间(100h、500h、1000h)对BFRP的抗弯强度影响显著;SEM结果表明树脂基体发生开裂的腐蚀状态,EDS结果表明腐蚀后各组分特别是硅元素含量增加。本研究确定了目前的知识空白,可以作为进一步研究BFRP筋替代钢筋在碱性环境中安全经济的钢筋混凝土结构的性能的参考点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Durability of Basalt Rebars under Alkaline Environment
Basalt Fibre Reinforced Polymer (BRRP) is a new composite material made from basalt fibre, and resin matrix. It has been introduced to replace steel rebars as the main component of reinforced concrete structures because of their corrosion resistance under aggressive environments. This study investigates the mechanical properties of BFRP and the degradation state exposed to the alkaline environment and compares the corrosion rate with steel rebars. The flexural strength properties are tested as the parameter of mechanical properties. The results show that the flexural strength of BFRP is affected by immersion time (100h, 500h, 1000h) significantly. SEM results show mechanism of corrosion state that cracked resin matrix occurred and EDS results indicate the percentage components especially silicon elements that detected increased after corroded. This research identifies a current knowledge gap and can be serve as a reference point for further studies on the properties of BFRP bars to replace steel bars for safe and economic reinforced concrete structures in alkaline environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lantana Camara Plant-Biochar Added Cementitious Mortar for Carbon Sequestration: Effect on Early-Age Properties An Experimental Study on the Mechanical Properties of Concrete by Using Human Hair Fiber as Reinforcement Designing a Material Database for the Flood-Resistant Housing An Experimental Study on Mechanical Properties of Concrete by Using Various Types of Coarse Aggregates of Different Quarries Progressive Pushover Analysis of a Reinforced Concrete Bridge of Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1