{"title":"用对象迁移自动机和追踪范式划分信号处理","authors":"Abdolreza Shirvani, B. Oommen","doi":"10.1109/MLSP.2017.8168149","DOIUrl":null,"url":null,"abstract":"Data in all Signal Processing (SP) applications is being generated super-exponentially, and at an ever increasing rate. A meaningful way to pre-process it so as to achieve feasible computation is by Partitioning the data [5]. Indeed, the task of partitioning is one of the most difficult problems in computing, and it has extensive applications in solving real-life problems, especially when the amount of SP data (i.e., images, voices, speakers, libraries etc.) to be processed is prohibitively large. The problem is known to be NP-hard. The benchmark solution for this for the Equi-partitioning Problem (EPP) has involved the classic field of Learning Automata (LA), and the corresponding algorithm, the Object Migrating Automata (OMA) has been used in numerous application domains. While the OMA is a fixed structure machine, it does not incorporate the Pursuit concept that has, recently, significantly enhanced the field of LA. In this paper, we pioneer the incorporation of the Pursuit concept into the OMA. We do this by a non-intuitive paradigm, namely that of removing (or discarding) from the query stream, queries that could be counter-productive. This can be perceived as a filtering agent triggered by a pursuit-based module. The resulting machine, referred to as the Pursuit OMA (POMA), has been rigorously tested in all the standard benchmark environments. Indeed, in certain extreme environments it is almost ten times faster than the original OMA. The application of the POMA to all signal processing applications is extremely promising.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"440 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Partitioning in signal processing using the object migration automaton and the pursuit paradigm\",\"authors\":\"Abdolreza Shirvani, B. Oommen\",\"doi\":\"10.1109/MLSP.2017.8168149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data in all Signal Processing (SP) applications is being generated super-exponentially, and at an ever increasing rate. A meaningful way to pre-process it so as to achieve feasible computation is by Partitioning the data [5]. Indeed, the task of partitioning is one of the most difficult problems in computing, and it has extensive applications in solving real-life problems, especially when the amount of SP data (i.e., images, voices, speakers, libraries etc.) to be processed is prohibitively large. The problem is known to be NP-hard. The benchmark solution for this for the Equi-partitioning Problem (EPP) has involved the classic field of Learning Automata (LA), and the corresponding algorithm, the Object Migrating Automata (OMA) has been used in numerous application domains. While the OMA is a fixed structure machine, it does not incorporate the Pursuit concept that has, recently, significantly enhanced the field of LA. In this paper, we pioneer the incorporation of the Pursuit concept into the OMA. We do this by a non-intuitive paradigm, namely that of removing (or discarding) from the query stream, queries that could be counter-productive. This can be perceived as a filtering agent triggered by a pursuit-based module. The resulting machine, referred to as the Pursuit OMA (POMA), has been rigorously tested in all the standard benchmark environments. Indeed, in certain extreme environments it is almost ten times faster than the original OMA. The application of the POMA to all signal processing applications is extremely promising.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"440 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
所有信号处理(SP)应用中的数据都在以超级指数级的速度增长。对数据进行预处理以实现可行的计算是一种有意义的方法[5]。事实上,分区任务是计算中最困难的问题之一,它在解决现实问题方面有广泛的应用,特别是当要处理的SP数据(即图像、声音、扬声器、库等)的数量非常大时。这个问题被称为NP-hard。针对等分割问题(EPP)的基准解决方案涉及到学习自动机(LA)的经典领域,而相应的算法——对象迁移自动机(OMA)已经在许多应用领域得到了应用。虽然OMA是一个固定结构的机器,但它并没有融入最近在LA领域得到显著提升的Pursuit概念。在本文中,我们率先将追求概念纳入OMA。我们通过一种非直观的范例来做到这一点,即从查询流中删除(或丢弃)可能适得其反的查询。这可以看作是由基于追踪的模块触发的过滤代理。生成的机器称为Pursuit OMA (POMA),已经在所有标准基准测试环境中进行了严格的测试。事实上,在某些极端环境下,它的速度几乎是原始OMA的十倍。POMA在所有信号处理应用中的应用是非常有前途的。
Partitioning in signal processing using the object migration automaton and the pursuit paradigm
Data in all Signal Processing (SP) applications is being generated super-exponentially, and at an ever increasing rate. A meaningful way to pre-process it so as to achieve feasible computation is by Partitioning the data [5]. Indeed, the task of partitioning is one of the most difficult problems in computing, and it has extensive applications in solving real-life problems, especially when the amount of SP data (i.e., images, voices, speakers, libraries etc.) to be processed is prohibitively large. The problem is known to be NP-hard. The benchmark solution for this for the Equi-partitioning Problem (EPP) has involved the classic field of Learning Automata (LA), and the corresponding algorithm, the Object Migrating Automata (OMA) has been used in numerous application domains. While the OMA is a fixed structure machine, it does not incorporate the Pursuit concept that has, recently, significantly enhanced the field of LA. In this paper, we pioneer the incorporation of the Pursuit concept into the OMA. We do this by a non-intuitive paradigm, namely that of removing (or discarding) from the query stream, queries that could be counter-productive. This can be perceived as a filtering agent triggered by a pursuit-based module. The resulting machine, referred to as the Pursuit OMA (POMA), has been rigorously tested in all the standard benchmark environments. Indeed, in certain extreme environments it is almost ten times faster than the original OMA. The application of the POMA to all signal processing applications is extremely promising.