表面活性剂作用下钻井泥浆添加剂的合成与应用

IF 1.2 Q4 NANOSCIENCE & NANOTECHNOLOGY international journal of nano dimension Pub Date : 2016-12-01 DOI:10.7508/IJND.2016.04.007
Mehran Sadeghalvaad, S. Sabbaghi, Pooneh Afsharimoghadam
{"title":"表面活性剂作用下钻井泥浆添加剂的合成与应用","authors":"Mehran Sadeghalvaad, S. Sabbaghi, Pooneh Afsharimoghadam","doi":"10.7508/IJND.2016.04.007","DOIUrl":null,"url":null,"abstract":"Drilling fluid is the most important lifeline of the drilling operation, that main task is facilitate the cuttings removal of the drilling. There are varieties of drilling fluids such as sodium bentonite based-drilling fluid is called “mud” and drilling foam or surfactant based-drilling fluid is called “soap”. The present work aims are study on the modified drilling mud properties by using the TiO2/ Polyacrylamide (PAM) as a nanocomposite additive. This additive was obtained through the aqueous solution polymerization of acrylamide monomer in the presence of TiO2 nanoparticles and high hydrophilic-lipophilic balance (HLB) surfactants such as sodium dodecyl sulfate (SDS) and polyoxyethylene sorbitan mono-oleate (Tween 80). At first, the TiO2/PAM nanocomposite was characterized by XRD, UV-Vis, FTIR, DLS and SEM. Then the viscosity, density -specific gravity- and filtration properties of the modified drilling mud were investigated in different amount of nanocomposite compounds. The results indicated that the density, fluid loss and filter cake thickness of the modified drilling mud were decreased with the increase of the surfactant concentration, whereas the viscosity was increased. With the increasing amount of SDS from 0.1 to 1.2 g in the synthesis process, the viscosity was increased approximately 4 cP and the density was decreased about 0.1 specific gravity. The nanoparticle and HLB value were affected in the filtration properties, but in general, that improved the fluid loss and filter cake thickness about 28 and 38% compared the based drilling mud, respectively.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"33 1","pages":"321-328"},"PeriodicalIF":1.2000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synthesis and application of the drilling mud additive in the presence of surfactants\",\"authors\":\"Mehran Sadeghalvaad, S. Sabbaghi, Pooneh Afsharimoghadam\",\"doi\":\"10.7508/IJND.2016.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drilling fluid is the most important lifeline of the drilling operation, that main task is facilitate the cuttings removal of the drilling. There are varieties of drilling fluids such as sodium bentonite based-drilling fluid is called “mud” and drilling foam or surfactant based-drilling fluid is called “soap”. The present work aims are study on the modified drilling mud properties by using the TiO2/ Polyacrylamide (PAM) as a nanocomposite additive. This additive was obtained through the aqueous solution polymerization of acrylamide monomer in the presence of TiO2 nanoparticles and high hydrophilic-lipophilic balance (HLB) surfactants such as sodium dodecyl sulfate (SDS) and polyoxyethylene sorbitan mono-oleate (Tween 80). At first, the TiO2/PAM nanocomposite was characterized by XRD, UV-Vis, FTIR, DLS and SEM. Then the viscosity, density -specific gravity- and filtration properties of the modified drilling mud were investigated in different amount of nanocomposite compounds. The results indicated that the density, fluid loss and filter cake thickness of the modified drilling mud were decreased with the increase of the surfactant concentration, whereas the viscosity was increased. With the increasing amount of SDS from 0.1 to 1.2 g in the synthesis process, the viscosity was increased approximately 4 cP and the density was decreased about 0.1 specific gravity. The nanoparticle and HLB value were affected in the filtration properties, but in general, that improved the fluid loss and filter cake thickness about 28 and 38% compared the based drilling mud, respectively.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":\"33 1\",\"pages\":\"321-328\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2016.04.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.04.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

钻井液是钻井作业最重要的生命线,其主要任务是促进钻井岩屑的清除。钻井液有多种,如钠基膨润土基钻井液称为“泥浆”,钻井泡沫或表面活性剂基钻井液称为“肥皂”。本文研究了以TiO2/聚丙烯酰胺(PAM)为纳米复合添加剂改性钻井泥浆的性能。该添加剂是在TiO2纳米粒子和高亲水-亲脂平衡(HLB)表面活性剂如十二烷基硫酸钠(SDS)和聚氧乙烯山梨醇单油酸酯(Tween 80)存在下,通过丙烯酰胺单体的水溶液聚合得到的。首先,采用XRD、UV-Vis、FTIR、DLS和SEM对TiO2/PAM纳米复合材料进行表征。研究了改性钻井液在不同纳米复合材料用量下的粘度、密度比重和过滤性能。结果表明,随着表面活性剂浓度的增加,改性钻井液的密度、滤失量和滤饼厚度均有所降低,而粘度则有所增加。在合成过程中,随着SDS的加入量从0.1 g增加到1.2 g,黏度增加约4 cP,密度降低约0.1比重。纳米颗粒和HLB值影响了钻井液的过滤性能,但总体而言,与基钻井液相比,纳米颗粒和HLB值分别提高了滤失量和滤饼厚度,分别提高了28%和38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and application of the drilling mud additive in the presence of surfactants
Drilling fluid is the most important lifeline of the drilling operation, that main task is facilitate the cuttings removal of the drilling. There are varieties of drilling fluids such as sodium bentonite based-drilling fluid is called “mud” and drilling foam or surfactant based-drilling fluid is called “soap”. The present work aims are study on the modified drilling mud properties by using the TiO2/ Polyacrylamide (PAM) as a nanocomposite additive. This additive was obtained through the aqueous solution polymerization of acrylamide monomer in the presence of TiO2 nanoparticles and high hydrophilic-lipophilic balance (HLB) surfactants such as sodium dodecyl sulfate (SDS) and polyoxyethylene sorbitan mono-oleate (Tween 80). At first, the TiO2/PAM nanocomposite was characterized by XRD, UV-Vis, FTIR, DLS and SEM. Then the viscosity, density -specific gravity- and filtration properties of the modified drilling mud were investigated in different amount of nanocomposite compounds. The results indicated that the density, fluid loss and filter cake thickness of the modified drilling mud were decreased with the increase of the surfactant concentration, whereas the viscosity was increased. With the increasing amount of SDS from 0.1 to 1.2 g in the synthesis process, the viscosity was increased approximately 4 cP and the density was decreased about 0.1 specific gravity. The nanoparticle and HLB value were affected in the filtration properties, but in general, that improved the fluid loss and filter cake thickness about 28 and 38% compared the based drilling mud, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
international journal of nano dimension
international journal of nano dimension NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.80
自引率
20.00%
发文量
0
期刊最新文献
Thermal performance of natural circulation loop filled with Al2O3/Water nanofluid Experimental and theoretical electronic absorption spectra, optical, photoelectrical characterizations of 1, 2, 3-Thiazaphosphinine and 1, 2-Azaphospholes bearing a chromone ring: Solvatochromic effect and TD/DFT approach Eco-friendly synthesis of surface grafted Carbon nanotubes from sugarcane cubes for development of prolonged release drug delivery platform Investigating thermo-physical properties and thermal performance of Al2O3 and CuO nanoparticles in Water and Ethylene Glycol based fluids Design, simulation and analysis of high-K gate dielectric FinField effect transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1