基于最优离散小波变换的鲁棒R峰值检测算法

Anurak Thungtong
{"title":"基于最优离散小波变换的鲁棒R峰值检测算法","authors":"Anurak Thungtong","doi":"10.1109/JCSSE.2017.8025931","DOIUrl":null,"url":null,"abstract":"Automated ECG signal processing can assist in diagnosing several heart diseases. Many R peak detection methods have been studied because the accuracy of R peak detection significantly affects the quality of subsequent ECG feature extraction. Two important steps in R peak detection algorithm that draw attention over researchers are the preprocessing and thresholding stages. Among several methods, wavelet transform is a widely used method for removing noise in the preprocessing stage. Various proposed algorithms require prior knowledge of frequency spectrum of the signal under consideration in order to select the wavelet detail coefficients in the reconstruction process. Moreover, parameter fine tuning is generally involved in threshold selection to accomplish high detection accuracy. As a result, it may be difficult to utilize these methods for general ECG data sets. Accordingly, we propose an automatic and parameter free method that optimally selects the appropriate detail components for wavelet reconstruction as well as the adaptive threshold. The proposed algorithm employs the analysis of probability density function of the processed ECG signal. The validation of the algorithm was performed over the MIT-BIH database and has produced an average sensitivity of 99.63% and specificity of 99.78% which is in the same range as the previously proposed approaches.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"18 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A robust algorithm for R peak detection based on optimal Discrete Wavelet Transform\",\"authors\":\"Anurak Thungtong\",\"doi\":\"10.1109/JCSSE.2017.8025931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated ECG signal processing can assist in diagnosing several heart diseases. Many R peak detection methods have been studied because the accuracy of R peak detection significantly affects the quality of subsequent ECG feature extraction. Two important steps in R peak detection algorithm that draw attention over researchers are the preprocessing and thresholding stages. Among several methods, wavelet transform is a widely used method for removing noise in the preprocessing stage. Various proposed algorithms require prior knowledge of frequency spectrum of the signal under consideration in order to select the wavelet detail coefficients in the reconstruction process. Moreover, parameter fine tuning is generally involved in threshold selection to accomplish high detection accuracy. As a result, it may be difficult to utilize these methods for general ECG data sets. Accordingly, we propose an automatic and parameter free method that optimally selects the appropriate detail components for wavelet reconstruction as well as the adaptive threshold. The proposed algorithm employs the analysis of probability density function of the processed ECG signal. The validation of the algorithm was performed over the MIT-BIH database and has produced an average sensitivity of 99.63% and specificity of 99.78% which is in the same range as the previously proposed approaches.\",\"PeriodicalId\":6460,\"journal\":{\"name\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"18 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2017.8025931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动心电信号处理可以帮助诊断多种心脏疾病。由于R峰检测的准确性对后续心电特征提取的质量影响很大,因此人们研究了许多R峰检测方法。在R峰值检测算法中,预处理和阈值处理是研究人员关注的两个重要步骤。在各种方法中,小波变换是一种广泛应用于预处理阶段的去噪方法。为了在重建过程中选择小波细节系数,各种提出的算法都需要对所考虑的信号的频谱有先验知识。此外,阈值的选择通常涉及参数微调,以达到较高的检测精度。因此,很难将这些方法应用于一般的心电数据集。因此,我们提出了一种自动的、无参数的方法,以最优地选择合适的细节分量进行小波重构和自适应阈值。该算法对处理后的心电信号进行概率密度函数分析。该算法在MIT-BIH数据库上进行了验证,产生了99.63%的平均灵敏度和99.78%的特异性,与之前提出的方法在相同的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust algorithm for R peak detection based on optimal Discrete Wavelet Transform
Automated ECG signal processing can assist in diagnosing several heart diseases. Many R peak detection methods have been studied because the accuracy of R peak detection significantly affects the quality of subsequent ECG feature extraction. Two important steps in R peak detection algorithm that draw attention over researchers are the preprocessing and thresholding stages. Among several methods, wavelet transform is a widely used method for removing noise in the preprocessing stage. Various proposed algorithms require prior knowledge of frequency spectrum of the signal under consideration in order to select the wavelet detail coefficients in the reconstruction process. Moreover, parameter fine tuning is generally involved in threshold selection to accomplish high detection accuracy. As a result, it may be difficult to utilize these methods for general ECG data sets. Accordingly, we propose an automatic and parameter free method that optimally selects the appropriate detail components for wavelet reconstruction as well as the adaptive threshold. The proposed algorithm employs the analysis of probability density function of the processed ECG signal. The validation of the algorithm was performed over the MIT-BIH database and has produced an average sensitivity of 99.63% and specificity of 99.78% which is in the same range as the previously proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1