离子液体结构元素对Knoevenagel缩合反应的不同影响

S. Zeltkalne, A. Zicmanis
{"title":"离子液体结构元素对Knoevenagel缩合反应的不同影响","authors":"S. Zeltkalne, A. Zicmanis","doi":"10.4236/GSC.2018.84022","DOIUrl":null,"url":null,"abstract":"Ionic liquids (ILs) with 1,3-disubstituted imidazolium cations and the dimethyl phosphate (DMP) anion, as well as the chloride anion were prepared and characterized by 1H NMR spectra, chromatographic and titrimetric purity control, and determination of the moisture content and thermal stability. ILs with the DMP anion decompose only at temperatures above 240°C. These ILs were tested as both reaction media (solvents) and catalysts for the Knoevenagel condensation reaction. The impact of the most significant structure elements of ILs was evaluated for the rates and yields of the condensation reaction. IL anions have the greatest effect on the condensation reactions, and even the chloride anion has some catalytic effect on the Knoevenagel condensation. Side chains in the imidazolium cations influence the reaction course very little. The ability of the imidazolium cations to form hydrogen bonding with the transition state of the condensation reaction leads to a remarkable slowdown in the reaction rates.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Different Influence of Structure Elements of Ionic Liquids on the Knoevenagel Condensation Reactions\",\"authors\":\"S. Zeltkalne, A. Zicmanis\",\"doi\":\"10.4236/GSC.2018.84022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionic liquids (ILs) with 1,3-disubstituted imidazolium cations and the dimethyl phosphate (DMP) anion, as well as the chloride anion were prepared and characterized by 1H NMR spectra, chromatographic and titrimetric purity control, and determination of the moisture content and thermal stability. ILs with the DMP anion decompose only at temperatures above 240°C. These ILs were tested as both reaction media (solvents) and catalysts for the Knoevenagel condensation reaction. The impact of the most significant structure elements of ILs was evaluated for the rates and yields of the condensation reaction. IL anions have the greatest effect on the condensation reactions, and even the chloride anion has some catalytic effect on the Knoevenagel condensation. Side chains in the imidazolium cations influence the reaction course very little. The ability of the imidazolium cations to form hydrogen bonding with the transition state of the condensation reaction leads to a remarkable slowdown in the reaction rates.\",\"PeriodicalId\":12770,\"journal\":{\"name\":\"Green and Sustainable Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/GSC.2018.84022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/GSC.2018.84022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

制备了含有1,3-二取代咪唑阳离子和磷酸二甲基(DMP)阴离子以及氯阴离子的离子液体(ILs),并通过1H NMR谱、色谱和滴定纯度控制、水分含量和热稳定性测定对其进行了表征。带有DMP阴离子的il只在240℃以上的温度下分解。这些il作为Knoevenagel缩合反应的反应介质(溶剂)和催化剂进行了测试。评价了il中最重要的结构元素对缩合反应速率和产率的影响。IL阴离子对缩合反应的影响最大,甚至氯阴离子对Knoevenagel缩合也有一定的催化作用。咪唑离子中的侧链对反应过程影响很小。咪唑离子与缩合反应过渡态形成氢键的能力导致反应速率显著减慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Different Influence of Structure Elements of Ionic Liquids on the Knoevenagel Condensation Reactions
Ionic liquids (ILs) with 1,3-disubstituted imidazolium cations and the dimethyl phosphate (DMP) anion, as well as the chloride anion were prepared and characterized by 1H NMR spectra, chromatographic and titrimetric purity control, and determination of the moisture content and thermal stability. ILs with the DMP anion decompose only at temperatures above 240°C. These ILs were tested as both reaction media (solvents) and catalysts for the Knoevenagel condensation reaction. The impact of the most significant structure elements of ILs was evaluated for the rates and yields of the condensation reaction. IL anions have the greatest effect on the condensation reactions, and even the chloride anion has some catalytic effect on the Knoevenagel condensation. Side chains in the imidazolium cations influence the reaction course very little. The ability of the imidazolium cations to form hydrogen bonding with the transition state of the condensation reaction leads to a remarkable slowdown in the reaction rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Certified Reference Material from Caffeine Solution for Assuring the Quality of Food and Drug Measurements Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex Production of Biogas from Olive Mill Waste Waters Treated by Cow Manure Wastewater Treatment Trial by Double Filtration on Granular Activated Carbon (GAC) Prepared from Peanut Shells Electrochemically and Ultrasonically-Enhanced Coagulation for Algae Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1