基于数据同化和神经微分方程的中微子风味演化推断

E. Rrapaj, A. Patwardhan, Eve Armstrong, G. Fuller
{"title":"基于数据同化和神经微分方程的中微子风味演化推断","authors":"E. Rrapaj, A. Patwardhan, Eve Armstrong, G. Fuller","doi":"10.1103/PHYSREVD.103.043006","DOIUrl":null,"url":null,"abstract":"The evolution of neutrino flavor in dense environments such as core-collapse supernovae and binary compact object mergers constitutes an important and unsolved problem. Its solution has potential implications for the dynamics and heavy-element nucleosynthesis in these environments. In this paper, we build upon recent work to explore inference-based techniques for estimation of model parameters and neutrino flavor evolution histories. We combine data assimilation, ordinary differential equation solvers, and neural networks to craft an inference approach tailored for non-linear dynamical systems. Using this architecture, and a simple two-neutrino, two-flavor model, we test various optimization algorithms with the help of four experimental setups. We find that employing this new architecture, together with evolutionary optimization algorithms, accurately captures flavor histories in the four experiments. This work provides more options for extending inference techniques to large numbers of neutrinos.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inference of neutrino flavor evolution through data assimilation and neural differential equations\",\"authors\":\"E. Rrapaj, A. Patwardhan, Eve Armstrong, G. Fuller\",\"doi\":\"10.1103/PHYSREVD.103.043006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of neutrino flavor in dense environments such as core-collapse supernovae and binary compact object mergers constitutes an important and unsolved problem. Its solution has potential implications for the dynamics and heavy-element nucleosynthesis in these environments. In this paper, we build upon recent work to explore inference-based techniques for estimation of model parameters and neutrino flavor evolution histories. We combine data assimilation, ordinary differential equation solvers, and neural networks to craft an inference approach tailored for non-linear dynamical systems. Using this architecture, and a simple two-neutrino, two-flavor model, we test various optimization algorithms with the help of four experimental setups. We find that employing this new architecture, together with evolutionary optimization algorithms, accurately captures flavor histories in the four experiments. This work provides more options for extending inference techniques to large numbers of neutrinos.\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.043006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.043006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

中微子风味在致密环境中的演化,如核心坍缩超新星和双紧天体并合,是一个重要的尚未解决的问题。它的解决对这些环境中的动力学和重元素核合成具有潜在的意义。在本文中,我们以最近的工作为基础,探索基于推理的技术来估计模型参数和中微子风味演化历史。我们结合数据同化,常微分方程求解器和神经网络来制作适合非线性动力系统的推理方法。利用这种结构和一个简单的双中微子、双风味模型,我们在四个实验装置的帮助下测试了各种优化算法。我们发现,采用这种新架构,结合进化优化算法,可以准确地捕获四个实验中的风味历史。这项工作为将推理技术扩展到大量中微子提供了更多的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference of neutrino flavor evolution through data assimilation and neural differential equations
The evolution of neutrino flavor in dense environments such as core-collapse supernovae and binary compact object mergers constitutes an important and unsolved problem. Its solution has potential implications for the dynamics and heavy-element nucleosynthesis in these environments. In this paper, we build upon recent work to explore inference-based techniques for estimation of model parameters and neutrino flavor evolution histories. We combine data assimilation, ordinary differential equation solvers, and neural networks to craft an inference approach tailored for non-linear dynamical systems. Using this architecture, and a simple two-neutrino, two-flavor model, we test various optimization algorithms with the help of four experimental setups. We find that employing this new architecture, together with evolutionary optimization algorithms, accurately captures flavor histories in the four experiments. This work provides more options for extending inference techniques to large numbers of neutrinos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing cosmic-ray positron and electron observations to probe the averaged properties of Milky Way pulsars EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade The galactic millisecond pulsar population : implications for the Galactic Center Excess. Spectral-temporal features of repeating ( one-off ) FRBs and Axion Star. AstroSat/UVIT observations of IC 4329A: constraining the accretion disc inner radius
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1