{"title":"具有简单约束的非凸函数的改进投影牛顿格式","authors":"Suvra Chakraborty Kanti, G. Panda","doi":"10.2298/YJOR200515002C","DOIUrl":null,"url":null,"abstract":"In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified projected Newton scheme for non-convex function with simple constraints\",\"authors\":\"Suvra Chakraborty Kanti, G. Panda\",\"doi\":\"10.2298/YJOR200515002C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/YJOR200515002C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/YJOR200515002C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
Modified projected Newton scheme for non-convex function with simple constraints
In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.