汽包锅炉水位控制系统的pid -遗传算法自整定控制器

Mohamad Abdul Hady, M. Yusuf, Ali Fatoni, I. Arifin
{"title":"汽包锅炉水位控制系统的pid -遗传算法自整定控制器","authors":"Mohamad Abdul Hady, M. Yusuf, Ali Fatoni, I. Arifin","doi":"10.12962/jaree.v5i2.102","DOIUrl":null,"url":null,"abstract":"A control system with uncertainty or unpredictable disturbance needs more effort to be controlled. A conventional PID Controller is the most popular method used in industries. It was tuned and adjusted by the designer, and it has fixed parameters during operation. However, the disturbance effect causes the desired system performance unreachable. By using a self-tuning controller, the problem should be tackled. In this paper, the PID-Genetic Algorithm (PID-GA) controller was proposed and tested with the steam drum water level control system of a steam power plant. Variation in power load causes noisy water level characteristics and should be maintained at + 0.4 meters from the setpoint to prevent the power plant trip. From the simulation, PID-GA can reduce disturbance of the minimum, nominal, and maximum load with perturbation peaks 0.18 m, 0.22 m, and 0.26 m respectively.Keywords: genetic algorithm, NWL, PID-GA, steam drum, steam power plant.","PeriodicalId":32708,"journal":{"name":"JAREE Journal on Advanced Research in Electrical Engineering","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Tuning PID-Genetic Algorithm Controller for Steam Drum Boiler Water Level Control System\",\"authors\":\"Mohamad Abdul Hady, M. Yusuf, Ali Fatoni, I. Arifin\",\"doi\":\"10.12962/jaree.v5i2.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A control system with uncertainty or unpredictable disturbance needs more effort to be controlled. A conventional PID Controller is the most popular method used in industries. It was tuned and adjusted by the designer, and it has fixed parameters during operation. However, the disturbance effect causes the desired system performance unreachable. By using a self-tuning controller, the problem should be tackled. In this paper, the PID-Genetic Algorithm (PID-GA) controller was proposed and tested with the steam drum water level control system of a steam power plant. Variation in power load causes noisy water level characteristics and should be maintained at + 0.4 meters from the setpoint to prevent the power plant trip. From the simulation, PID-GA can reduce disturbance of the minimum, nominal, and maximum load with perturbation peaks 0.18 m, 0.22 m, and 0.26 m respectively.Keywords: genetic algorithm, NWL, PID-GA, steam drum, steam power plant.\",\"PeriodicalId\":32708,\"journal\":{\"name\":\"JAREE Journal on Advanced Research in Electrical Engineering\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAREE Journal on Advanced Research in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12962/jaree.v5i2.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAREE Journal on Advanced Research in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/jaree.v5i2.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有不确定或不可预测扰动的控制系统需要更多的控制努力。传统的PID控制器是工业中最常用的方法。它是由设计者调整的,在运行过程中有固定的参数。然而,干扰效应导致系统无法达到预期的性能。通过使用自调谐控制器,应该可以解决这个问题。本文提出了pid -遗传算法(PID-GA)控制器,并在某电厂汽包水位控制系统中进行了验证。电力负荷的变化会引起噪声的水位特性,应保持在距设定值+ 0.4米的位置,以防止发电厂跳闸。仿真结果表明,PID-GA能够有效降低最小、标称和最大负载的扰动,其扰动峰值分别为0.18 m、0.22 m和0.26 m。关键词:遗传算法,NWL, PID-GA,汽包,蒸汽电厂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Tuning PID-Genetic Algorithm Controller for Steam Drum Boiler Water Level Control System
A control system with uncertainty or unpredictable disturbance needs more effort to be controlled. A conventional PID Controller is the most popular method used in industries. It was tuned and adjusted by the designer, and it has fixed parameters during operation. However, the disturbance effect causes the desired system performance unreachable. By using a self-tuning controller, the problem should be tackled. In this paper, the PID-Genetic Algorithm (PID-GA) controller was proposed and tested with the steam drum water level control system of a steam power plant. Variation in power load causes noisy water level characteristics and should be maintained at + 0.4 meters from the setpoint to prevent the power plant trip. From the simulation, PID-GA can reduce disturbance of the minimum, nominal, and maximum load with perturbation peaks 0.18 m, 0.22 m, and 0.26 m respectively.Keywords: genetic algorithm, NWL, PID-GA, steam drum, steam power plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
期刊最新文献
A new lossless passive snubber with simple structure for pulse width modulation DC-DC converters Prosumer-Based Optimization of Educational Building Grid Connected with Plug-in Electric Vehicle Integration using Modified Firefly Algorithm Pencak Silat Movement Classification Using CNN Based On Body Pose Load Frequency Control by Quadratic Regulator Approach with Compensating Pole using SIMULINK Temperature and Humidity Control System for 20 kV of Cubicle with Multiple Input Multiple Output Fuzzy Logic Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1