Stephen Safe, Huajun Han, Arul Jayaraman, Laurie A Davidson, Clinton D Allred, Ivan Ivanov, Yongjian Yang, James J Cai, Robert S Chapkin
{"title":"结肠细胞和肿瘤中的芳基烃受体 (AhR) 信号转导。","authors":"Stephen Safe, Huajun Han, Arul Jayaraman, Laurie A Davidson, Clinton D Allred, Ivan Ivanov, Yongjian Yang, James J Cai, Robert S Chapkin","doi":"10.3390/receptors2010005","DOIUrl":null,"url":null,"abstract":"<p><p>The aryl hydrocarbon receptor (AhR) is overexpressed in many tumor types and exhibits tumor-specific tumor promoter and tumor suppressor-like activity. In colon cancer, most but not all studies suggest that the AhR exhibits tumor suppressor activity which is enhanced by AhR ligands acting as agonists. Our studies investigated the role of the AhR in colon tumorigenesis using wild-type and AhR-knockout mice, the inflammation model of colon tumorigenesis using mice treated with azoxymethane (AOM)/dextran sodium sulfate (DSS) and APC<sup>S580/+</sup>; Kras<sup>G12D/+</sup> mice all of which form intestinal tumors. The effects of tissue-specific AhR loss in the intestine of the tumor-forming mice on colonic stem cells, organoid-initiating capacity, colon tumor formation and mechanisms of AhR-mediated effects were investigated. Loss of AhR enhanced stem cell and tumor growth and in the AOM/DSS model AhR-dependent suppression of FOXM1 and downstream genes was important for AhR-dependent anticancer activity. Furthermore, the effectiveness of interleukin-22 (IL22) in colonic epithelial cells was also dependent on AhR expression. IL22 induced phosphorylation of STAT3, inhibited colonic organoid growth, promoted colonic cell proliferation in vivo and enhanced DNA repair in AOM/DSS-induced tumors. In this mouse model, the AhR suppressed SOCS3 expression and enhanced IL22-mediated activation of STAT3, whereas the loss of the AhR increased levels of SOCS3 which in turn inhibited IL22-induced STAT3 activation. In the APC<sup>S580/+</sup>; Kras<sup>G12D/+</sup> mouse model, the loss of the AhR enhanced Wnt signaling and colon carcinogenesis. Results in both mouse models of colon carcinogenesis were complemented by single cell transcriptomics on colonic intestinal crypts which also showed that AhR deletion promoted expression of FOXM1-regulated genes in multiple colonic cell subtypes. These results support the role of the AhR as a tumor suppressor-like gene in the colon.</p>","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"30 1","pages":"93-99"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aryl Hydrocarbon Receptor (AhR) Signaling in Colonic Cells and Tumors.\",\"authors\":\"Stephen Safe, Huajun Han, Arul Jayaraman, Laurie A Davidson, Clinton D Allred, Ivan Ivanov, Yongjian Yang, James J Cai, Robert S Chapkin\",\"doi\":\"10.3390/receptors2010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aryl hydrocarbon receptor (AhR) is overexpressed in many tumor types and exhibits tumor-specific tumor promoter and tumor suppressor-like activity. In colon cancer, most but not all studies suggest that the AhR exhibits tumor suppressor activity which is enhanced by AhR ligands acting as agonists. Our studies investigated the role of the AhR in colon tumorigenesis using wild-type and AhR-knockout mice, the inflammation model of colon tumorigenesis using mice treated with azoxymethane (AOM)/dextran sodium sulfate (DSS) and APC<sup>S580/+</sup>; Kras<sup>G12D/+</sup> mice all of which form intestinal tumors. The effects of tissue-specific AhR loss in the intestine of the tumor-forming mice on colonic stem cells, organoid-initiating capacity, colon tumor formation and mechanisms of AhR-mediated effects were investigated. Loss of AhR enhanced stem cell and tumor growth and in the AOM/DSS model AhR-dependent suppression of FOXM1 and downstream genes was important for AhR-dependent anticancer activity. Furthermore, the effectiveness of interleukin-22 (IL22) in colonic epithelial cells was also dependent on AhR expression. IL22 induced phosphorylation of STAT3, inhibited colonic organoid growth, promoted colonic cell proliferation in vivo and enhanced DNA repair in AOM/DSS-induced tumors. In this mouse model, the AhR suppressed SOCS3 expression and enhanced IL22-mediated activation of STAT3, whereas the loss of the AhR increased levels of SOCS3 which in turn inhibited IL22-induced STAT3 activation. In the APC<sup>S580/+</sup>; Kras<sup>G12D/+</sup> mouse model, the loss of the AhR enhanced Wnt signaling and colon carcinogenesis. Results in both mouse models of colon carcinogenesis were complemented by single cell transcriptomics on colonic intestinal crypts which also showed that AhR deletion promoted expression of FOXM1-regulated genes in multiple colonic cell subtypes. These results support the role of the AhR as a tumor suppressor-like gene in the colon.</p>\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\"30 1\",\"pages\":\"93-99\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/receptors2010005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/receptors2010005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Aryl Hydrocarbon Receptor (AhR) Signaling in Colonic Cells and Tumors.
The aryl hydrocarbon receptor (AhR) is overexpressed in many tumor types and exhibits tumor-specific tumor promoter and tumor suppressor-like activity. In colon cancer, most but not all studies suggest that the AhR exhibits tumor suppressor activity which is enhanced by AhR ligands acting as agonists. Our studies investigated the role of the AhR in colon tumorigenesis using wild-type and AhR-knockout mice, the inflammation model of colon tumorigenesis using mice treated with azoxymethane (AOM)/dextran sodium sulfate (DSS) and APCS580/+; KrasG12D/+ mice all of which form intestinal tumors. The effects of tissue-specific AhR loss in the intestine of the tumor-forming mice on colonic stem cells, organoid-initiating capacity, colon tumor formation and mechanisms of AhR-mediated effects were investigated. Loss of AhR enhanced stem cell and tumor growth and in the AOM/DSS model AhR-dependent suppression of FOXM1 and downstream genes was important for AhR-dependent anticancer activity. Furthermore, the effectiveness of interleukin-22 (IL22) in colonic epithelial cells was also dependent on AhR expression. IL22 induced phosphorylation of STAT3, inhibited colonic organoid growth, promoted colonic cell proliferation in vivo and enhanced DNA repair in AOM/DSS-induced tumors. In this mouse model, the AhR suppressed SOCS3 expression and enhanced IL22-mediated activation of STAT3, whereas the loss of the AhR increased levels of SOCS3 which in turn inhibited IL22-induced STAT3 activation. In the APCS580/+; KrasG12D/+ mouse model, the loss of the AhR enhanced Wnt signaling and colon carcinogenesis. Results in both mouse models of colon carcinogenesis were complemented by single cell transcriptomics on colonic intestinal crypts which also showed that AhR deletion promoted expression of FOXM1-regulated genes in multiple colonic cell subtypes. These results support the role of the AhR as a tumor suppressor-like gene in the colon.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.