用微分不等式约束最小化应用于完全李雅普诺夫函数

P. Giesl, C. Argáez, S. Hafstein, H. Wendland
{"title":"用微分不等式约束最小化应用于完全李雅普诺夫函数","authors":"P. Giesl, C. Argáez, S. Hafstein, H. Wendland","doi":"10.1090/mcom/3629","DOIUrl":null,"url":null,"abstract":"Motivated by the desire to compute complete Lyapunov functions for nonlinear dynamical systems, we develop a general theory of discretizing a certain type of continuous minimization problems with differential inequality constraints. The resulting discretized problems are quadratic optimization problems, for which there exist e fficient solution algorithms, and we show that their unique solutions converge strongly in appropriate Sobolev spaces to the unique solution of the original continuous problem. \nWe develop the theory and present examples of our approach, where we compute complete Lyapunov functions for nonlinear dynamical systems. \nA complete Lyapunov function characterizes the behaviour of a general dynamical system. In particular, the state space is divided into the chain-recurrent set, where the complete Lyapunov function is constant along solutions, and the part characterizing the gradient-like flow, where the complete Lyapunov function is strictly decreasing along solutions. We propose a new method to compute a complete Lyapunov function as the solution of a quadratic minimization problem, for which no information \nabout the chain-recurrent set is required. The solutions to the discretized problems, which can be solved using quadratic programming, converge to the complete Lyapunov function.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"206 1","pages":"2137-2160"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Minimization with differential inequality constraints applied to complete Lyapunov functions\",\"authors\":\"P. Giesl, C. Argáez, S. Hafstein, H. Wendland\",\"doi\":\"10.1090/mcom/3629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the desire to compute complete Lyapunov functions for nonlinear dynamical systems, we develop a general theory of discretizing a certain type of continuous minimization problems with differential inequality constraints. The resulting discretized problems are quadratic optimization problems, for which there exist e fficient solution algorithms, and we show that their unique solutions converge strongly in appropriate Sobolev spaces to the unique solution of the original continuous problem. \\nWe develop the theory and present examples of our approach, where we compute complete Lyapunov functions for nonlinear dynamical systems. \\nA complete Lyapunov function characterizes the behaviour of a general dynamical system. In particular, the state space is divided into the chain-recurrent set, where the complete Lyapunov function is constant along solutions, and the part characterizing the gradient-like flow, where the complete Lyapunov function is strictly decreasing along solutions. We propose a new method to compute a complete Lyapunov function as the solution of a quadratic minimization problem, for which no information \\nabout the chain-recurrent set is required. The solutions to the discretized problems, which can be solved using quadratic programming, converge to the complete Lyapunov function.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"206 1\",\"pages\":\"2137-2160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了计算非线性动力系统的完全李雅普诺夫函数,我们提出了一类具有微分不等式约束的连续最小化问题的离散化的一般理论。所得到的离散化问题是二次优化问题,存在5种有效的解算法,并证明了它们的唯一解在适当的Sobolev空间内强收敛于原连续问题的唯一解。我们发展了理论并给出了我们的方法的例子,其中我们计算非线性动力系统的完整李雅普诺夫函数。完备的李雅普诺夫函数描述了一般动力系统的行为。特别地,将状态空间划分为链循环集,其中完备Lyapunov函数沿解是常数,以及表征类梯度流的部分,其中完备Lyapunov函数沿解严格递减。本文提出了一种计算完全Lyapunov函数的新方法,作为不需要链循环集信息的二次最小化问题的解。离散化问题的解收敛于完全李雅普诺夫函数,可以用二次规划求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimization with differential inequality constraints applied to complete Lyapunov functions
Motivated by the desire to compute complete Lyapunov functions for nonlinear dynamical systems, we develop a general theory of discretizing a certain type of continuous minimization problems with differential inequality constraints. The resulting discretized problems are quadratic optimization problems, for which there exist e fficient solution algorithms, and we show that their unique solutions converge strongly in appropriate Sobolev spaces to the unique solution of the original continuous problem. We develop the theory and present examples of our approach, where we compute complete Lyapunov functions for nonlinear dynamical systems. A complete Lyapunov function characterizes the behaviour of a general dynamical system. In particular, the state space is divided into the chain-recurrent set, where the complete Lyapunov function is constant along solutions, and the part characterizing the gradient-like flow, where the complete Lyapunov function is strictly decreasing along solutions. We propose a new method to compute a complete Lyapunov function as the solution of a quadratic minimization problem, for which no information about the chain-recurrent set is required. The solutions to the discretized problems, which can be solved using quadratic programming, converge to the complete Lyapunov function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full discretization error analysis of exponential integrators for semilinear wave equations Fast and stable augmented Levin methods for highly oscillatory and singular integrals Finite element/holomorphic operator function method for the transmission eigenvalue problem Algorithms for fundamental invariants and equivariants of finite groups An algorithm for Hodge ideals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1