{"title":"碳分子筛变压吸附分离甲烷-氮混合物","authors":"A.I. Fatehi, K.F. Loughlin, M.M. Hassan","doi":"10.1016/0950-4214(95)98227-C","DOIUrl":null,"url":null,"abstract":"<div><p>A 60%-40% and a 92%-8% methane nitrogen mixture were separated in a two-bed pressure swing adsorption (PSA) unit using a carbon molecular sieve (CMS) adsorbent. The CMS adsorbent used in this separation is a dual resistance type comprising a barrier resistance on the crystal surface and diffusion resistance in the crystal interior. This dual resistance is modelled using the linear driving force (LDF) PSA model. The parameter Ω of the LDF model, which relates the theoretical and experimental results, was found to be significantly different from that for conventional diffusion-controlled processes. This difference is attributed to the presence of a barrier resistance in the CMS.</p></div>","PeriodicalId":12586,"journal":{"name":"Gas Separation & Purification","volume":"9 3","pages":"Pages 199-204"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0950-4214(95)98227-C","citationCount":"76","resultStr":"{\"title\":\"Separation of methane—nitrogen mixtures by pressure swing adsorption using a carbon molecular sieve\",\"authors\":\"A.I. Fatehi, K.F. Loughlin, M.M. Hassan\",\"doi\":\"10.1016/0950-4214(95)98227-C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A 60%-40% and a 92%-8% methane nitrogen mixture were separated in a two-bed pressure swing adsorption (PSA) unit using a carbon molecular sieve (CMS) adsorbent. The CMS adsorbent used in this separation is a dual resistance type comprising a barrier resistance on the crystal surface and diffusion resistance in the crystal interior. This dual resistance is modelled using the linear driving force (LDF) PSA model. The parameter Ω of the LDF model, which relates the theoretical and experimental results, was found to be significantly different from that for conventional diffusion-controlled processes. This difference is attributed to the presence of a barrier resistance in the CMS.</p></div>\",\"PeriodicalId\":12586,\"journal\":{\"name\":\"Gas Separation & Purification\",\"volume\":\"9 3\",\"pages\":\"Pages 199-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0950-4214(95)98227-C\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Separation & Purification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/095042149598227C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Separation & Purification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/095042149598227C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separation of methane—nitrogen mixtures by pressure swing adsorption using a carbon molecular sieve
A 60%-40% and a 92%-8% methane nitrogen mixture were separated in a two-bed pressure swing adsorption (PSA) unit using a carbon molecular sieve (CMS) adsorbent. The CMS adsorbent used in this separation is a dual resistance type comprising a barrier resistance on the crystal surface and diffusion resistance in the crystal interior. This dual resistance is modelled using the linear driving force (LDF) PSA model. The parameter Ω of the LDF model, which relates the theoretical and experimental results, was found to be significantly different from that for conventional diffusion-controlled processes. This difference is attributed to the presence of a barrier resistance in the CMS.