寻找高级行为缺失的技能

Adam Pacheck, Salar Moarref, H. Kress-Gazit
{"title":"寻找高级行为缺失的技能","authors":"Adam Pacheck, Salar Moarref, H. Kress-Gazit","doi":"10.1109/ICRA40945.2020.9197223","DOIUrl":null,"url":null,"abstract":"Recently, Linear Temporal Logic (LTL) has been used as a formalism for defining high-level robot tasks, and LTL synthesis has been used to automatically create correct-by-construction robot control. The underlying premise of this approach is that the robot has a set of actions, or skills, that can be composed to achieve the high- level task. In this paper we consider LTL specifications that cannot be synthesized into robot control due to lack of appropriate skills; we present algorithms for automatically suggesting new or modified skills for the robot that will guarantee the task will be achieved. We demonstrate our approach with a physical Baxter robot and a simulated KUKA IIWA arm.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"26 1","pages":"10335-10341"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Finding Missing Skills for High-Level Behaviors\",\"authors\":\"Adam Pacheck, Salar Moarref, H. Kress-Gazit\",\"doi\":\"10.1109/ICRA40945.2020.9197223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Linear Temporal Logic (LTL) has been used as a formalism for defining high-level robot tasks, and LTL synthesis has been used to automatically create correct-by-construction robot control. The underlying premise of this approach is that the robot has a set of actions, or skills, that can be composed to achieve the high- level task. In this paper we consider LTL specifications that cannot be synthesized into robot control due to lack of appropriate skills; we present algorithms for automatically suggesting new or modified skills for the robot that will guarantee the task will be achieved. We demonstrate our approach with a physical Baxter robot and a simulated KUKA IIWA arm.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"26 1\",\"pages\":\"10335-10341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,线性时间逻辑(LTL)已被用作定义高级机器人任务的形式化方法,LTL综合已被用于自动创建按结构正确的机器人控制。这种方法的基本前提是机器人具有一组动作或技能,可以组合起来完成高级任务。在本文中,我们考虑了由于缺乏适当的技能而无法综合到机器人控制中的LTL规范;我们提出算法,自动建议新的或修改的技能,机器人将保证任务的完成。我们用一个物理的Baxter机器人和一个模拟的KUKA IIWA手臂来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Missing Skills for High-Level Behaviors
Recently, Linear Temporal Logic (LTL) has been used as a formalism for defining high-level robot tasks, and LTL synthesis has been used to automatically create correct-by-construction robot control. The underlying premise of this approach is that the robot has a set of actions, or skills, that can be composed to achieve the high- level task. In this paper we consider LTL specifications that cannot be synthesized into robot control due to lack of appropriate skills; we present algorithms for automatically suggesting new or modified skills for the robot that will guarantee the task will be achieved. We demonstrate our approach with a physical Baxter robot and a simulated KUKA IIWA arm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1