C. Ee, Rodrigo Fonseca, Sukun Kim, Daekyeong Moon, A. Tavakoli, D. Culler, S. Shenker, I. Stoica
{"title":"传感器的模块化网络层","authors":"C. Ee, Rodrigo Fonseca, Sukun Kim, Daekyeong Moon, A. Tavakoli, D. Culler, S. Shenker, I. Stoica","doi":"10.5555/1298455.1298479","DOIUrl":null,"url":null,"abstract":"An overall sensornet architecture would help tame the increasingly complex structure of wireless sensornet software and help foster greater interoperability between different codebases. A previous step in this direction is the Sensornet Protocol (SP), a unifying link-abstraction layer. This paper takes the natural next step by proposing a modular network-layer for sensornets that sits atop SP. This modularity eases implementation of new protocols by increasing code reuse, and enables co-existing protocols to share and reduce code and resources consumed at run-time. We demonstrate how current protocols can be decomposed into this modular structure and show that the costs, in performance and code footprint, are minimal relative to their monolithic counterparts.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"2 1","pages":"249-262"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"A modular network layer for sensorsets\",\"authors\":\"C. Ee, Rodrigo Fonseca, Sukun Kim, Daekyeong Moon, A. Tavakoli, D. Culler, S. Shenker, I. Stoica\",\"doi\":\"10.5555/1298455.1298479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An overall sensornet architecture would help tame the increasingly complex structure of wireless sensornet software and help foster greater interoperability between different codebases. A previous step in this direction is the Sensornet Protocol (SP), a unifying link-abstraction layer. This paper takes the natural next step by proposing a modular network-layer for sensornets that sits atop SP. This modularity eases implementation of new protocols by increasing code reuse, and enables co-existing protocols to share and reduce code and resources consumed at run-time. We demonstrate how current protocols can be decomposed into this modular structure and show that the costs, in performance and code footprint, are minimal relative to their monolithic counterparts.\",\"PeriodicalId\":90294,\"journal\":{\"name\":\"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation\",\"volume\":\"2 1\",\"pages\":\"249-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1298455.1298479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1298455.1298479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An overall sensornet architecture would help tame the increasingly complex structure of wireless sensornet software and help foster greater interoperability between different codebases. A previous step in this direction is the Sensornet Protocol (SP), a unifying link-abstraction layer. This paper takes the natural next step by proposing a modular network-layer for sensornets that sits atop SP. This modularity eases implementation of new protocols by increasing code reuse, and enables co-existing protocols to share and reduce code and resources consumed at run-time. We demonstrate how current protocols can be decomposed into this modular structure and show that the costs, in performance and code footprint, are minimal relative to their monolithic counterparts.