一种用于高斜坡速率电力应用的混合电-热储能系统

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS Mechatronic Systems and Control Pub Date : 2019-11-26 DOI:10.1115/dscc2019-9089
Cary E. Laird, A. Alleyne
{"title":"一种用于高斜坡速率电力应用的混合电-热储能系统","authors":"Cary E. Laird, A. Alleyne","doi":"10.1115/dscc2019-9089","DOIUrl":null,"url":null,"abstract":"\n The practice of hybridizing energy storage systems is vital to high ramp rate power applications, in which energy storage systems are constrained by strict power and energy requirements. Hybrid energy storage is typically studied in the electrical and thermal domains separately, but due to the inherent link between electrical and thermal energy domains, it is necessary to examine hybrid energy storage in both domains simultaneously. In this paper, a combined electro-thermal energy storage system is modeled and simulated. Equivalent circuit and lumped-parameter models are used to facilitate control design. PI controllers are designed for both the electrical and thermal domains to demonstrate the ability to perform multi-domain energy management.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hybrid Electro-Thermal Energy Storage System for High Ramp Rate Power Applications\",\"authors\":\"Cary E. Laird, A. Alleyne\",\"doi\":\"10.1115/dscc2019-9089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The practice of hybridizing energy storage systems is vital to high ramp rate power applications, in which energy storage systems are constrained by strict power and energy requirements. Hybrid energy storage is typically studied in the electrical and thermal domains separately, but due to the inherent link between electrical and thermal energy domains, it is necessary to examine hybrid energy storage in both domains simultaneously. In this paper, a combined electro-thermal energy storage system is modeled and simulated. Equivalent circuit and lumped-parameter models are used to facilitate control design. PI controllers are designed for both the electrical and thermal domains to demonstrate the ability to perform multi-domain energy management.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

混合储能系统的实践对于高斜坡速率电力应用至关重要,因为储能系统受到严格的功率和能量要求的限制。混合储能通常分别在电和热领域进行研究,但由于电和热领域之间的内在联系,有必要同时研究这两个领域的混合储能。本文对一种组合电-热储能系统进行了建模和仿真。为了便于控制设计,采用了等效电路和集总参数模型。PI控制器是为电气和热领域设计的,以展示执行多领域能量管理的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Electro-Thermal Energy Storage System for High Ramp Rate Power Applications
The practice of hybridizing energy storage systems is vital to high ramp rate power applications, in which energy storage systems are constrained by strict power and energy requirements. Hybrid energy storage is typically studied in the electrical and thermal domains separately, but due to the inherent link between electrical and thermal energy domains, it is necessary to examine hybrid energy storage in both domains simultaneously. In this paper, a combined electro-thermal energy storage system is modeled and simulated. Equivalent circuit and lumped-parameter models are used to facilitate control design. PI controllers are designed for both the electrical and thermal domains to demonstrate the ability to perform multi-domain energy management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
期刊最新文献
APPLICATION OF MULTIAXIAL CNC TECHNOLOGY IN PRECISION MOLD MANUFACTURING, 1-9. TRAJECTORY TRACKING OF NONHOLONOMIC CONSTRAINT MOBILE ROBOT BASED ON ADRC INTERNET INFORMATION COLLECTION AND DATA ANALYSIS BASED ON ARTIFICIAL INTELLIGENCE, 1-9. SI DESIGN ON TRACTION BRAKING CHARACTERISTICS TEST OF TRACTION MOTOR FOR RAIL TRANSIT, 1-9. MODELLING AND SIMULATION OF FRICTION RESISTANCE OF SUPERHYDROPHOBIC SURFACE MICROSTRUCTURE, 202-209.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1