Mengyun Liu, Renjian Pan, Fangming Ye, Xin Li, K. Chakrabarty, Xinli Gu
{"title":"基于质量预测的细粒度自适应测试","authors":"Mengyun Liu, Renjian Pan, Fangming Ye, Xin Li, K. Chakrabarty, Xinli Gu","doi":"10.1145/3385261","DOIUrl":null,"url":null,"abstract":"The ever-increasing complexity of integrated circuits inevitably leads to high test cost. Adaptive testing provides an effective solution for test-cost reduction; this testing framework selects the important test items for each set of chips. However, adaptive testing methods designed for digital circuits are coarse-grained, and they are targeted only at systematic defects. To incorporate fabrication variations and random defects in the testing framework, we propose a fine-grained adaptive testing method based on machine learning. We use the parametric test results from the previous stages of test to train a quality-prediction model for use in subsequent test stages. Next, we partition a given lot of chips into two groups based on their predicted quality. A test-selection method based on statistical learning is applied to the chips with high predicted quality. An ad hoc test-selection method is proposed and applied to the chips with low predicted quality. Experimental results using a large number of fabricated chips and the associated test data show that to achieve the same defect level as in prior work on adaptive testing, the fine-grained adaptive testing method reduces test cost by 90% for low-quality chips and up to 7% for all the chips in a lot.","PeriodicalId":7063,"journal":{"name":"ACM Trans. Design Autom. Electr. Syst.","volume":"58 1","pages":"38:1-38:25"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fine-grained Adaptive Testing Based on Quality Prediction\",\"authors\":\"Mengyun Liu, Renjian Pan, Fangming Ye, Xin Li, K. Chakrabarty, Xinli Gu\",\"doi\":\"10.1145/3385261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-increasing complexity of integrated circuits inevitably leads to high test cost. Adaptive testing provides an effective solution for test-cost reduction; this testing framework selects the important test items for each set of chips. However, adaptive testing methods designed for digital circuits are coarse-grained, and they are targeted only at systematic defects. To incorporate fabrication variations and random defects in the testing framework, we propose a fine-grained adaptive testing method based on machine learning. We use the parametric test results from the previous stages of test to train a quality-prediction model for use in subsequent test stages. Next, we partition a given lot of chips into two groups based on their predicted quality. A test-selection method based on statistical learning is applied to the chips with high predicted quality. An ad hoc test-selection method is proposed and applied to the chips with low predicted quality. Experimental results using a large number of fabricated chips and the associated test data show that to achieve the same defect level as in prior work on adaptive testing, the fine-grained adaptive testing method reduces test cost by 90% for low-quality chips and up to 7% for all the chips in a lot.\",\"PeriodicalId\":7063,\"journal\":{\"name\":\"ACM Trans. Design Autom. Electr. Syst.\",\"volume\":\"58 1\",\"pages\":\"38:1-38:25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Design Autom. Electr. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Design Autom. Electr. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fine-grained Adaptive Testing Based on Quality Prediction
The ever-increasing complexity of integrated circuits inevitably leads to high test cost. Adaptive testing provides an effective solution for test-cost reduction; this testing framework selects the important test items for each set of chips. However, adaptive testing methods designed for digital circuits are coarse-grained, and they are targeted only at systematic defects. To incorporate fabrication variations and random defects in the testing framework, we propose a fine-grained adaptive testing method based on machine learning. We use the parametric test results from the previous stages of test to train a quality-prediction model for use in subsequent test stages. Next, we partition a given lot of chips into two groups based on their predicted quality. A test-selection method based on statistical learning is applied to the chips with high predicted quality. An ad hoc test-selection method is proposed and applied to the chips with low predicted quality. Experimental results using a large number of fabricated chips and the associated test data show that to achieve the same defect level as in prior work on adaptive testing, the fine-grained adaptive testing method reduces test cost by 90% for low-quality chips and up to 7% for all the chips in a lot.