{"title":"最小内存占用的非随机化","authors":"Dean Doron, R. Tell","doi":"10.4230/LIPIcs.CCC.2023.11","DOIUrl":null,"url":null,"abstract":"Existing proofs that deduce BPL = L from circuit lower bounds convert randomized algorithms into deterministic algorithms with large constant overhead in space. We study space-bounded derandomization with minimal footprint, and ask what is the minimal possible space overhead for derandomization. We show that BPSPACE [ S ] ⊆ DSPACE [ c · S ] for c ≈ 2, assuming space-efficient cryptographic PRGs, and, either: (1) lower bounds against bounded-space algorithms with advice, or: (2) lower bounds against certain uniform compression algorithms. Under additional assumptions regarding the power of catalytic computation, in a new setting of parameters that was not studied before, we are even able to get c ≈ 1. Our results are constructive: Given a candidate hard function (and a candidate cryptographic PRG) we show how to transform the randomized algorithm into an efficient deterministic one. This follows from new PRGs and targeted PRGs for space-bounded algorithms, which we combine with novel space-efficient evaluation methods. A central ingredient in all our constructions is hardness amplification reductions in logspace-uniform TC 0 , that were not known before. 2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of computation → Pseudorandomness and derandomization; Theory of computation → Error-correcting codes","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"105 1","pages":"11:1-11:15"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Derandomization with Minimal Memory Footprint\",\"authors\":\"Dean Doron, R. Tell\",\"doi\":\"10.4230/LIPIcs.CCC.2023.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing proofs that deduce BPL = L from circuit lower bounds convert randomized algorithms into deterministic algorithms with large constant overhead in space. We study space-bounded derandomization with minimal footprint, and ask what is the minimal possible space overhead for derandomization. We show that BPSPACE [ S ] ⊆ DSPACE [ c · S ] for c ≈ 2, assuming space-efficient cryptographic PRGs, and, either: (1) lower bounds against bounded-space algorithms with advice, or: (2) lower bounds against certain uniform compression algorithms. Under additional assumptions regarding the power of catalytic computation, in a new setting of parameters that was not studied before, we are even able to get c ≈ 1. Our results are constructive: Given a candidate hard function (and a candidate cryptographic PRG) we show how to transform the randomized algorithm into an efficient deterministic one. This follows from new PRGs and targeted PRGs for space-bounded algorithms, which we combine with novel space-efficient evaluation methods. A central ingredient in all our constructions is hardness amplification reductions in logspace-uniform TC 0 , that were not known before. 2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of computation → Pseudorandomness and derandomization; Theory of computation → Error-correcting codes\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"105 1\",\"pages\":\"11:1-11:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2023.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2023.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existing proofs that deduce BPL = L from circuit lower bounds convert randomized algorithms into deterministic algorithms with large constant overhead in space. We study space-bounded derandomization with minimal footprint, and ask what is the minimal possible space overhead for derandomization. We show that BPSPACE [ S ] ⊆ DSPACE [ c · S ] for c ≈ 2, assuming space-efficient cryptographic PRGs, and, either: (1) lower bounds against bounded-space algorithms with advice, or: (2) lower bounds against certain uniform compression algorithms. Under additional assumptions regarding the power of catalytic computation, in a new setting of parameters that was not studied before, we are even able to get c ≈ 1. Our results are constructive: Given a candidate hard function (and a candidate cryptographic PRG) we show how to transform the randomized algorithm into an efficient deterministic one. This follows from new PRGs and targeted PRGs for space-bounded algorithms, which we combine with novel space-efficient evaluation methods. A central ingredient in all our constructions is hardness amplification reductions in logspace-uniform TC 0 , that were not known before. 2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of computation → Pseudorandomness and derandomization; Theory of computation → Error-correcting codes