{"title":"Harshaw TLD(型号:TLD- 100h)基于单独校准法的线性测试","authors":"Luay Abdulsahib Rasool, Naashat Raheem Al-Ataby, Alaa Fadil Hashim","doi":"10.11648/J.NS.20190401.11","DOIUrl":null,"url":null,"abstract":"The testing of the individual monitoring instruments is important to demonstrate the performance of the instruments to give accurate measurements in workplace environment. In this research, 18 Thermoluminescence dosimetry (TLD) units were calibrated individually at surface water phantom and exposed with 60Co source at block 32 in Malaysia Nuclear Agency. The TLD were exposed at 5.00 meter distance from the source. The exposed TLD in terms of Personal Dose Equivalent at 10mm depth tissue, (Hp (10)) equal to 2.00mSv. The exposed TLD then be measured using winRems software from Harshaw TLD reader 6600 plus for defining the calibration factor in term of mSv/nC. After that all the 18 unit TLD were tested using linearity testing method and 18 TLD units were exposed with different dose that were 1mSv, 5mSv, 7mSv, 10mSv, 15mSv, and 20mSv. The research is conducted to satisfy two main objectives which was to obtain linear regression coefficient R2 ~ 1 and to show that the ratio of measured value over standard values are within ICRP trumpet acceptance limit curve, which are within (-33% to +50%).","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linearity Test for Harshaw TLD (Type: TLD-100H) Base on Individual Calibration Method\",\"authors\":\"Luay Abdulsahib Rasool, Naashat Raheem Al-Ataby, Alaa Fadil Hashim\",\"doi\":\"10.11648/J.NS.20190401.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The testing of the individual monitoring instruments is important to demonstrate the performance of the instruments to give accurate measurements in workplace environment. In this research, 18 Thermoluminescence dosimetry (TLD) units were calibrated individually at surface water phantom and exposed with 60Co source at block 32 in Malaysia Nuclear Agency. The TLD were exposed at 5.00 meter distance from the source. The exposed TLD in terms of Personal Dose Equivalent at 10mm depth tissue, (Hp (10)) equal to 2.00mSv. The exposed TLD then be measured using winRems software from Harshaw TLD reader 6600 plus for defining the calibration factor in term of mSv/nC. After that all the 18 unit TLD were tested using linearity testing method and 18 TLD units were exposed with different dose that were 1mSv, 5mSv, 7mSv, 10mSv, 15mSv, and 20mSv. The research is conducted to satisfy two main objectives which was to obtain linear regression coefficient R2 ~ 1 and to show that the ratio of measured value over standard values are within ICRP trumpet acceptance limit curve, which are within (-33% to +50%).\",\"PeriodicalId\":88069,\"journal\":{\"name\":\"Nuclear science abstracts\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear science abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.NS.20190401.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.NS.20190401.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linearity Test for Harshaw TLD (Type: TLD-100H) Base on Individual Calibration Method
The testing of the individual monitoring instruments is important to demonstrate the performance of the instruments to give accurate measurements in workplace environment. In this research, 18 Thermoluminescence dosimetry (TLD) units were calibrated individually at surface water phantom and exposed with 60Co source at block 32 in Malaysia Nuclear Agency. The TLD were exposed at 5.00 meter distance from the source. The exposed TLD in terms of Personal Dose Equivalent at 10mm depth tissue, (Hp (10)) equal to 2.00mSv. The exposed TLD then be measured using winRems software from Harshaw TLD reader 6600 plus for defining the calibration factor in term of mSv/nC. After that all the 18 unit TLD were tested using linearity testing method and 18 TLD units were exposed with different dose that were 1mSv, 5mSv, 7mSv, 10mSv, 15mSv, and 20mSv. The research is conducted to satisfy two main objectives which was to obtain linear regression coefficient R2 ~ 1 and to show that the ratio of measured value over standard values are within ICRP trumpet acceptance limit curve, which are within (-33% to +50%).