地幔中铁菱镁矿的高压转化和稳定性

E. Boulard, F. Guyot, G. Fiquet
{"title":"地幔中铁菱镁矿的高压转化和稳定性","authors":"E. Boulard, F. Guyot, G. Fiquet","doi":"10.1002/9781119508229.ch11","DOIUrl":null,"url":null,"abstract":"Ferromagnesite (Mg,Fe)CO3 plays a key role in the transport and storage of carbon in the deep Earth. Experimental and theoretical studies demonstrated its high stability at high pressure and temperature against melting or decomposition. Several pressure-induced transformations of ferromagnesite have been reported at conditions corresponding to depths greater than ~1100 km in the Earth’s lower mantle. Although there is still no consensus on their exact crystallographic structures, evidences are strong of a change in carbon environment from the low-pressure planar CO32ion into carbon atoms tetrahedrally coordinated by four oxygens. High-pressure iron-bearing phases concentrate a large amount of Fe3+ as a result of intracrystalline self-redox reactions. These crystallographic particularities may have significant implications on carbon reservoirs and fluxes in the deep Earth.","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High‐Pressure Transformations and Stability of Ferromagnesite in the Earth's Mantle\",\"authors\":\"E. Boulard, F. Guyot, G. Fiquet\",\"doi\":\"10.1002/9781119508229.ch11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferromagnesite (Mg,Fe)CO3 plays a key role in the transport and storage of carbon in the deep Earth. Experimental and theoretical studies demonstrated its high stability at high pressure and temperature against melting or decomposition. Several pressure-induced transformations of ferromagnesite have been reported at conditions corresponding to depths greater than ~1100 km in the Earth’s lower mantle. Although there is still no consensus on their exact crystallographic structures, evidences are strong of a change in carbon environment from the low-pressure planar CO32ion into carbon atoms tetrahedrally coordinated by four oxygens. High-pressure iron-bearing phases concentrate a large amount of Fe3+ as a result of intracrystalline self-redox reactions. These crystallographic particularities may have significant implications on carbon reservoirs and fluxes in the deep Earth.\",\"PeriodicalId\":12504,\"journal\":{\"name\":\"Geophysical Monograph Series\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Monograph Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119508229.ch11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Monograph Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119508229.ch11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

菱镁矿(Mg,Fe)CO3在地球深部碳的运输和储存中起着关键作用。实验和理论研究表明,它在高压和高温下具有很高的稳定性,不会熔化或分解。在地球下地幔深度大于~1100 km的条件下,已经报道了几种由压力引起的铁菱镁矿转变。虽然它们的确切晶体结构仍未达成共识,但有力的证据表明,碳环境从低压平面co32离子转变为由四个氧配位的四面体碳原子。高压含铁相通过晶内自氧化还原反应富集了大量Fe3+。这些晶体学的特殊性可能对地球深处的碳储层和通量具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High‐Pressure Transformations and Stability of Ferromagnesite in the Earth's Mantle
Ferromagnesite (Mg,Fe)CO3 plays a key role in the transport and storage of carbon in the deep Earth. Experimental and theoretical studies demonstrated its high stability at high pressure and temperature against melting or decomposition. Several pressure-induced transformations of ferromagnesite have been reported at conditions corresponding to depths greater than ~1100 km in the Earth’s lower mantle. Although there is still no consensus on their exact crystallographic structures, evidences are strong of a change in carbon environment from the low-pressure planar CO32ion into carbon atoms tetrahedrally coordinated by four oxygens. High-pressure iron-bearing phases concentrate a large amount of Fe3+ as a result of intracrystalline self-redox reactions. These crystallographic particularities may have significant implications on carbon reservoirs and fluxes in the deep Earth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Processes in Large Scale Atmospheric Models Earth Observation Applications and Global Policy Frameworks Isotopic Constraints on Earth System Processes Remote Sensing of Water‐Related Hazards Geophysical Monitoring for Geologic Carbon Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1