{"title":"用蝴蝶形板抑制AlN Lamb波谐振器锚损","authors":"J. Zou, Chih-Ming Lin, A. Pisano","doi":"10.1109/FCS.2015.7138874","DOIUrl":null,"url":null,"abstract":"The use of butterfly-shaped thin plates, formed by reducing the tether-to-plate angle, can raised the quality factor (Q) of aluminum nitride (AlN) Lamb wave resonators (LWRs) by eliminating the anchor loss. The finite element analysis (FEA) simulation results show that the butterfly-shaped plate can efficiently keep the vibration far from the edges at the tether-to-plate plane, so that the acoustic wave leaky through the supporting tethers is reduced. Specifically, the rounded butterfly-shaped resonators show more efficient suppression in the anchor loss compared to the beveled butterfly-shaped resonators. The measured frequency response for a 863-MHz AlN LWR with 45° beveled tether-to-plate transition yields a Q of 1,979 which upwards 30% over a conventional rectangular resonator; another AlN LWR on the butterfly-shaped plate with rounded tether-to-plate transition yields a Q of 2,531, representing a 67% improvement.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":"7 1","pages":"432-435"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Anchor loss suppression using butterfly-shaped plates for AlN Lamb wave resonators\",\"authors\":\"J. Zou, Chih-Ming Lin, A. Pisano\",\"doi\":\"10.1109/FCS.2015.7138874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of butterfly-shaped thin plates, formed by reducing the tether-to-plate angle, can raised the quality factor (Q) of aluminum nitride (AlN) Lamb wave resonators (LWRs) by eliminating the anchor loss. The finite element analysis (FEA) simulation results show that the butterfly-shaped plate can efficiently keep the vibration far from the edges at the tether-to-plate plane, so that the acoustic wave leaky through the supporting tethers is reduced. Specifically, the rounded butterfly-shaped resonators show more efficient suppression in the anchor loss compared to the beveled butterfly-shaped resonators. The measured frequency response for a 863-MHz AlN LWR with 45° beveled tether-to-plate transition yields a Q of 1,979 which upwards 30% over a conventional rectangular resonator; another AlN LWR on the butterfly-shaped plate with rounded tether-to-plate transition yields a Q of 2,531, representing a 67% improvement.\",\"PeriodicalId\":57667,\"journal\":{\"name\":\"时间频率公报\",\"volume\":\"7 1\",\"pages\":\"432-435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"时间频率公报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2015.7138874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anchor loss suppression using butterfly-shaped plates for AlN Lamb wave resonators
The use of butterfly-shaped thin plates, formed by reducing the tether-to-plate angle, can raised the quality factor (Q) of aluminum nitride (AlN) Lamb wave resonators (LWRs) by eliminating the anchor loss. The finite element analysis (FEA) simulation results show that the butterfly-shaped plate can efficiently keep the vibration far from the edges at the tether-to-plate plane, so that the acoustic wave leaky through the supporting tethers is reduced. Specifically, the rounded butterfly-shaped resonators show more efficient suppression in the anchor loss compared to the beveled butterfly-shaped resonators. The measured frequency response for a 863-MHz AlN LWR with 45° beveled tether-to-plate transition yields a Q of 1,979 which upwards 30% over a conventional rectangular resonator; another AlN LWR on the butterfly-shaped plate with rounded tether-to-plate transition yields a Q of 2,531, representing a 67% improvement.