H. Saleh, R. Kalfat, Kamiran Abduka, R. Al-Mahaidi
{"title":"用L-CFRP加固钢筋混凝土板抗冲剪的有限元模拟","authors":"H. Saleh, R. Kalfat, Kamiran Abduka, R. Al-Mahaidi","doi":"10.1080/13287982.2022.2079165","DOIUrl":null,"url":null,"abstract":"ABSTRACT Punching shear strengthening of existing reinforced concrete (RC) flat slabs can be required due to increased loads or design/construction defect. One of the more effective punching shear strengthening solutions, which has shown promising results is the use of post-installed L-shaped carbon fibre-reinforced polymer (L-CFRP) laminates bonded into predrilled holes through the slab in specific shear perimeter arrangements around the column. This paper presents an extensive finite element analysis (FEA) into RC slabs strengthened in punching shear using L-CFRP laminates. FEA models were developed using an existing experimental study as the baseline. After successful model calibration, parametric studies were used to explore the influence of critical parameters such as the concrete strength (32, 40 and 60 MPa) and the number of shear perimeters on the resulting punching shear capacity. In total, four RC slabs were modelled including an unstrengthened control specimen and an additional three specimens with different strengthening arrangements. A bond-slip model was introduced between the CFRP and the concrete and its calibration was described in this paper. Simulation results are compared with the experimental results in terms of load–deflection behaviour, FRP strains and crack patterns. The predicted peak loads calculated from the design codes and critical shear crack theory (CSCT) are compared and discussed in conjunction with the experimental and FEA results. The failure mode for the slabs were also compared with design codes and CSCT theory predictions. The study demonstrated the FEA results to have a good agreement with the experimental results in terms of load deflection behaviour, failure mode and L-CFRP strains.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element modelling of RC slabs strengthened against punching shear with L-CFRP laminates\",\"authors\":\"H. Saleh, R. Kalfat, Kamiran Abduka, R. Al-Mahaidi\",\"doi\":\"10.1080/13287982.2022.2079165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Punching shear strengthening of existing reinforced concrete (RC) flat slabs can be required due to increased loads or design/construction defect. One of the more effective punching shear strengthening solutions, which has shown promising results is the use of post-installed L-shaped carbon fibre-reinforced polymer (L-CFRP) laminates bonded into predrilled holes through the slab in specific shear perimeter arrangements around the column. This paper presents an extensive finite element analysis (FEA) into RC slabs strengthened in punching shear using L-CFRP laminates. FEA models were developed using an existing experimental study as the baseline. After successful model calibration, parametric studies were used to explore the influence of critical parameters such as the concrete strength (32, 40 and 60 MPa) and the number of shear perimeters on the resulting punching shear capacity. In total, four RC slabs were modelled including an unstrengthened control specimen and an additional three specimens with different strengthening arrangements. A bond-slip model was introduced between the CFRP and the concrete and its calibration was described in this paper. Simulation results are compared with the experimental results in terms of load–deflection behaviour, FRP strains and crack patterns. The predicted peak loads calculated from the design codes and critical shear crack theory (CSCT) are compared and discussed in conjunction with the experimental and FEA results. The failure mode for the slabs were also compared with design codes and CSCT theory predictions. The study demonstrated the FEA results to have a good agreement with the experimental results in terms of load deflection behaviour, failure mode and L-CFRP strains.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2022.2079165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2022.2079165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Finite element modelling of RC slabs strengthened against punching shear with L-CFRP laminates
ABSTRACT Punching shear strengthening of existing reinforced concrete (RC) flat slabs can be required due to increased loads or design/construction defect. One of the more effective punching shear strengthening solutions, which has shown promising results is the use of post-installed L-shaped carbon fibre-reinforced polymer (L-CFRP) laminates bonded into predrilled holes through the slab in specific shear perimeter arrangements around the column. This paper presents an extensive finite element analysis (FEA) into RC slabs strengthened in punching shear using L-CFRP laminates. FEA models were developed using an existing experimental study as the baseline. After successful model calibration, parametric studies were used to explore the influence of critical parameters such as the concrete strength (32, 40 and 60 MPa) and the number of shear perimeters on the resulting punching shear capacity. In total, four RC slabs were modelled including an unstrengthened control specimen and an additional three specimens with different strengthening arrangements. A bond-slip model was introduced between the CFRP and the concrete and its calibration was described in this paper. Simulation results are compared with the experimental results in terms of load–deflection behaviour, FRP strains and crack patterns. The predicted peak loads calculated from the design codes and critical shear crack theory (CSCT) are compared and discussed in conjunction with the experimental and FEA results. The failure mode for the slabs were also compared with design codes and CSCT theory predictions. The study demonstrated the FEA results to have a good agreement with the experimental results in terms of load deflection behaviour, failure mode and L-CFRP strains.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.