开发一种利用潜在变量对动态网络进行建模和监测的方法

Fatemeh Elhambakhsh, M. S. Mehrabad
{"title":"开发一种利用潜在变量对动态网络进行建模和监测的方法","authors":"Fatemeh Elhambakhsh, M. S. Mehrabad","doi":"10.22068/IJIEPR.32.1.29","DOIUrl":null,"url":null,"abstract":"Statistical monitoring of dynamic networks is a major topic of interest in complex social systems. Many researches have been conducted on modeling and monitoring dynamic social networks. This article proposes a new methodology for modeling and monitoring dynamic social networks for detection of anomalies in network structures using latent variables. The key idea behind our proposed methodology is to determine the importance of latent variables in creating edges between nodes as well as observed covariates. First, latent space model (LSM) is used to model dynamic networks. Vector of parameters in LSM are monitored through multivariate control charts in order to detect changes in different network sizes. Experiments on simulated social network monitoring demonstrate that our surveillance monitoring strategy can effectively detect abrupt changes between actors in dynamic networks using latent variables.","PeriodicalId":52223,"journal":{"name":"International Journal of Industrial Engineering and Production Research","volume":"37 1","pages":"29-36"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a method for modeling and monitoring of dynamic networks using latent variables\",\"authors\":\"Fatemeh Elhambakhsh, M. S. Mehrabad\",\"doi\":\"10.22068/IJIEPR.32.1.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical monitoring of dynamic networks is a major topic of interest in complex social systems. Many researches have been conducted on modeling and monitoring dynamic social networks. This article proposes a new methodology for modeling and monitoring dynamic social networks for detection of anomalies in network structures using latent variables. The key idea behind our proposed methodology is to determine the importance of latent variables in creating edges between nodes as well as observed covariates. First, latent space model (LSM) is used to model dynamic networks. Vector of parameters in LSM are monitored through multivariate control charts in order to detect changes in different network sizes. Experiments on simulated social network monitoring demonstrate that our surveillance monitoring strategy can effectively detect abrupt changes between actors in dynamic networks using latent variables.\",\"PeriodicalId\":52223,\"journal\":{\"name\":\"International Journal of Industrial Engineering and Production Research\",\"volume\":\"37 1\",\"pages\":\"29-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Engineering and Production Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJIEPR.32.1.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering and Production Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJIEPR.32.1.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

动态网络的统计监测是复杂社会系统中一个重要的研究课题。人们对动态社会网络的建模和监测进行了许多研究。本文提出了一种新的方法,用于建模和监测动态社会网络,用于使用潜在变量检测网络结构中的异常。我们提出的方法背后的关键思想是确定潜在变量在创建节点之间的边以及观察到的协变量中的重要性。首先,利用潜在空间模型(LSM)对动态网络进行建模。通过多变量控制图监测LSM中的参数向量,以检测不同网络规模下的变化。模拟社会网络监测实验表明,我们的监测策略可以利用潜在变量有效地检测动态网络中行为者之间的突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a method for modeling and monitoring of dynamic networks using latent variables
Statistical monitoring of dynamic networks is a major topic of interest in complex social systems. Many researches have been conducted on modeling and monitoring dynamic social networks. This article proposes a new methodology for modeling and monitoring dynamic social networks for detection of anomalies in network structures using latent variables. The key idea behind our proposed methodology is to determine the importance of latent variables in creating edges between nodes as well as observed covariates. First, latent space model (LSM) is used to model dynamic networks. Vector of parameters in LSM are monitored through multivariate control charts in order to detect changes in different network sizes. Experiments on simulated social network monitoring demonstrate that our surveillance monitoring strategy can effectively detect abrupt changes between actors in dynamic networks using latent variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Industrial Engineering and Production Research
International Journal of Industrial Engineering and Production Research Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Literature Review on Optimization Techniques Used for Minimization of Casting Design and Development of Foldable Electric Bicycle The Environmental Innovation and the Sustainability of the Economic Unit: A Review Effect of Content Marketing on Industrial Segmentation: An Applied Study in Iraqi Telecommunication and Public Company Design and Fabrication of Multifunctional, Portable and Economical Agriculture Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1