动态投资组合管理与机器学习

Xinyu Huang, Massimo Guidolin, Emmanouil Platanakis, D. Newton
{"title":"动态投资组合管理与机器学习","authors":"Xinyu Huang, Massimo Guidolin, Emmanouil Platanakis, D. Newton","doi":"10.2139/ssrn.3770688","DOIUrl":null,"url":null,"abstract":"We present a structured portfolio optimization framework with sparse inverse covariance estimation and an attention-based LSTM network that exploits machine learning (deep learning) techniques. We shrink Wishart volatility towards a Graphical Lasso initial covariance estimator and solve the portfolio optimization using a fast coordinate descent algorithm with regularization determined using a genetic algorithm. We further introduce a novel portfolio shrinkage rule using an attention-based Long-Short-Term-Memory (LSTM) network, allowing a formal selection of reference portfolios where the network forecasts future performance based on predetermined out-of-sample monthly certainty equivalent return. We reduce the dimension of successful candidates and then linearly combine them. When nested within a minimum-variance, Bayes-Stein shrinkage, Black-Litterman portfolio framework with four types of weight constraints based on no-short-selling, upper, lower-generalized variance-based restrictions, our approach delivers a clear improvement over the baseline sample-based minimum-variance portfolio and claims superiority over 11 GARCH models used to forecast covariances, as well as a minimum-variance combination of all dynamic optimization models. We provide an illustrative example based on optimal diversification across hedge fund strategies. Robustness checks show our application of sparse covariance dominates the use of a dimension reduction algorithm for Wishart covariance forecasting.","PeriodicalId":13594,"journal":{"name":"Information Systems & Economics eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic Portfolio Management with Machine Learning\",\"authors\":\"Xinyu Huang, Massimo Guidolin, Emmanouil Platanakis, D. Newton\",\"doi\":\"10.2139/ssrn.3770688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a structured portfolio optimization framework with sparse inverse covariance estimation and an attention-based LSTM network that exploits machine learning (deep learning) techniques. We shrink Wishart volatility towards a Graphical Lasso initial covariance estimator and solve the portfolio optimization using a fast coordinate descent algorithm with regularization determined using a genetic algorithm. We further introduce a novel portfolio shrinkage rule using an attention-based Long-Short-Term-Memory (LSTM) network, allowing a formal selection of reference portfolios where the network forecasts future performance based on predetermined out-of-sample monthly certainty equivalent return. We reduce the dimension of successful candidates and then linearly combine them. When nested within a minimum-variance, Bayes-Stein shrinkage, Black-Litterman portfolio framework with four types of weight constraints based on no-short-selling, upper, lower-generalized variance-based restrictions, our approach delivers a clear improvement over the baseline sample-based minimum-variance portfolio and claims superiority over 11 GARCH models used to forecast covariances, as well as a minimum-variance combination of all dynamic optimization models. We provide an illustrative example based on optimal diversification across hedge fund strategies. Robustness checks show our application of sparse covariance dominates the use of a dimension reduction algorithm for Wishart covariance forecasting.\",\"PeriodicalId\":13594,\"journal\":{\"name\":\"Information Systems & Economics eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems & Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3770688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems & Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3770688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个具有稀疏逆协方差估计的结构化投资组合优化框架和一个利用机器学习(深度学习)技术的基于注意力的LSTM网络。我们将Wishart波动率缩小到图形Lasso初始协方差估计,并使用快速坐标下降算法求解组合优化,正则化由遗传算法确定。我们进一步使用基于注意力的长短期记忆(LSTM)网络引入了一种新的投资组合收缩规则,允许正式选择参考投资组合,其中网络根据预先确定的样本外月度确定性等效回报预测未来表现。我们降低成功候选的维数,然后将它们线性组合。当嵌套在最小方差、贝叶斯-斯坦收缩、Black-Litterman投资组合框架内时,我们的方法比基于基线样本的最小方差投资组合有明显的改进,并且优于用于预测协方差的11个GARCH模型,以及所有动态优化模型的最小方差组合。我们提供了一个基于对冲基金策略的最优多样化的说明性例子。鲁棒性检验表明,稀疏协方差的应用在Wishart协方差预测的降维算法中占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Portfolio Management with Machine Learning
We present a structured portfolio optimization framework with sparse inverse covariance estimation and an attention-based LSTM network that exploits machine learning (deep learning) techniques. We shrink Wishart volatility towards a Graphical Lasso initial covariance estimator and solve the portfolio optimization using a fast coordinate descent algorithm with regularization determined using a genetic algorithm. We further introduce a novel portfolio shrinkage rule using an attention-based Long-Short-Term-Memory (LSTM) network, allowing a formal selection of reference portfolios where the network forecasts future performance based on predetermined out-of-sample monthly certainty equivalent return. We reduce the dimension of successful candidates and then linearly combine them. When nested within a minimum-variance, Bayes-Stein shrinkage, Black-Litterman portfolio framework with four types of weight constraints based on no-short-selling, upper, lower-generalized variance-based restrictions, our approach delivers a clear improvement over the baseline sample-based minimum-variance portfolio and claims superiority over 11 GARCH models used to forecast covariances, as well as a minimum-variance combination of all dynamic optimization models. We provide an illustrative example based on optimal diversification across hedge fund strategies. Robustness checks show our application of sparse covariance dominates the use of a dimension reduction algorithm for Wishart covariance forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investing in Lending Technology: IT Spending in Banking Governing 'European values' Inside Data Flows: Interdisciplinary Perspectives More Competitive Search Through Regulation Business News and Business Cycles Efecto de la banda ancha sobre el valor agregado en los municipios de Colombia (Effect of Broadband on Added Value in Colombia Municipalities)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1