摘要208:证据陈述管理算法的发展,以帮助癌症变异的解释

J. Saliba, Lana M. Sheta, Kilannin Krysiak, Arpad M. Danos, Alex R Marr, Erica K. Barnell, Shahil P. Pema, Wan-Hsin Lin, P. Terraf, Joshua F. McMichael, C. Grisdale, Shruti Rao, S. Kiwala, Adam C. Coffman, A. Wagner, O. Griffith, M. Griffith
{"title":"摘要208:证据陈述管理算法的发展,以帮助癌症变异的解释","authors":"J. Saliba, Lana M. Sheta, Kilannin Krysiak, Arpad M. Danos, Alex R Marr, Erica K. Barnell, Shahil P. Pema, Wan-Hsin Lin, P. Terraf, Joshua F. McMichael, C. Grisdale, Shruti Rao, S. Kiwala, Adam C. Coffman, A. Wagner, O. Griffith, M. Griffith","doi":"10.1158/1538-7445.AM2021-208","DOIUrl":null,"url":null,"abstract":"The Clinical Interpretation of Variants in Cancer (CIViC) knowledgebase (civicdb.org) is an open access, centralized hub for structured, community curated and expertly moderated relationships between genomic variants and cancer. Evidence is curated from peer-reviewed, published literature and is classified into one of five Types: Predisposing, Diagnostic, Prognostic, Predictive (therapeutic), or Functional. The robustness of the Evidence is conveyed through the assignment of Levels with the first three derived from patient studies (Validated, Clinical, Case Study), Preclinical, generated from in vivo or in vitro data, and Inferential, which describes indirect associations. Each Evidence Item requires an Evidence Statement written in the curator9s own words summarizing the source9s results regarding the variant9s clinical impact. Collaborations with groups like ClinGen have generated a significant influx of new curators, increasing the demand for detailed principles regarding data prioritization in the Evidence Statement in order to streamline the curation process. The curation community would benefit from simpler, visual guides through the complex decisions needed to appropriately and consistently curate Evidence Items. We are devoting significant effort to continue the development of straightforward Evidence curation algorithms (decision trees) similar to those used in clinical molecular testing labs to aid CIViC curators. Previously published guidelines on development of these statements are the basis of our Evidence algorithms. Obvious inflection points for curators are clearly identified with specific details noted for each to optimize decision efficiency. As the predominant Evidence Type comprising 57% of all CIViC submissions, 58% of referenced patient trials, and 92% of Preclinical submissions, Predictive Evidence is the initial focus of our pilot guidelines with Diagnostic and Prognostic to follow. Within the Predictive Evidence Type, clinical trials, case studies, and preclinical Levels each require vastly different Evidence Statement details and ultimately the creation of three separate, uniquely modeled algorithms. The implementation of these algorithms will assist in streamlining both curation and the expert review process. Notably, a template is not being created, as the preservation of curator style and voice is important to maintain the community feel of the database. To ensure the highest level of clarity, our team is utilizing specific novice and experienced curators to assist with the development process. As these algorithms pass the pilot phase, they are being tested as curator training tools. Ultimately, these guidelines will be used to encourage independence in curators and to enhance the Evidence already contained in CIViC. Citation Format: Jason Saliba, Lana Sheta, Kilannin Krysiak, Arpad Danos, Alex Marr, Erica Barnell, Shahil Pema, Wan-Hsin Lin, Panieh Terraf, Joshua F. McMichael, Cameron J. Grisdale, Shruti Rao, Susanna Kiwala, Adam Coffman, Alex Wagner, Obi L. Griffith, Malachi Griffith. Development of Evidence Statement curation algorithms to aid cancer variant interpretation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 208.","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract 208: Development of Evidence Statement curation algorithms to aid cancer variant interpretation\",\"authors\":\"J. Saliba, Lana M. Sheta, Kilannin Krysiak, Arpad M. Danos, Alex R Marr, Erica K. Barnell, Shahil P. Pema, Wan-Hsin Lin, P. Terraf, Joshua F. McMichael, C. Grisdale, Shruti Rao, S. Kiwala, Adam C. Coffman, A. Wagner, O. Griffith, M. Griffith\",\"doi\":\"10.1158/1538-7445.AM2021-208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Clinical Interpretation of Variants in Cancer (CIViC) knowledgebase (civicdb.org) is an open access, centralized hub for structured, community curated and expertly moderated relationships between genomic variants and cancer. Evidence is curated from peer-reviewed, published literature and is classified into one of five Types: Predisposing, Diagnostic, Prognostic, Predictive (therapeutic), or Functional. The robustness of the Evidence is conveyed through the assignment of Levels with the first three derived from patient studies (Validated, Clinical, Case Study), Preclinical, generated from in vivo or in vitro data, and Inferential, which describes indirect associations. Each Evidence Item requires an Evidence Statement written in the curator9s own words summarizing the source9s results regarding the variant9s clinical impact. Collaborations with groups like ClinGen have generated a significant influx of new curators, increasing the demand for detailed principles regarding data prioritization in the Evidence Statement in order to streamline the curation process. The curation community would benefit from simpler, visual guides through the complex decisions needed to appropriately and consistently curate Evidence Items. We are devoting significant effort to continue the development of straightforward Evidence curation algorithms (decision trees) similar to those used in clinical molecular testing labs to aid CIViC curators. Previously published guidelines on development of these statements are the basis of our Evidence algorithms. Obvious inflection points for curators are clearly identified with specific details noted for each to optimize decision efficiency. As the predominant Evidence Type comprising 57% of all CIViC submissions, 58% of referenced patient trials, and 92% of Preclinical submissions, Predictive Evidence is the initial focus of our pilot guidelines with Diagnostic and Prognostic to follow. Within the Predictive Evidence Type, clinical trials, case studies, and preclinical Levels each require vastly different Evidence Statement details and ultimately the creation of three separate, uniquely modeled algorithms. The implementation of these algorithms will assist in streamlining both curation and the expert review process. Notably, a template is not being created, as the preservation of curator style and voice is important to maintain the community feel of the database. To ensure the highest level of clarity, our team is utilizing specific novice and experienced curators to assist with the development process. As these algorithms pass the pilot phase, they are being tested as curator training tools. Ultimately, these guidelines will be used to encourage independence in curators and to enhance the Evidence already contained in CIViC. Citation Format: Jason Saliba, Lana Sheta, Kilannin Krysiak, Arpad Danos, Alex Marr, Erica Barnell, Shahil Pema, Wan-Hsin Lin, Panieh Terraf, Joshua F. McMichael, Cameron J. Grisdale, Shruti Rao, Susanna Kiwala, Adam Coffman, Alex Wagner, Obi L. Griffith, Malachi Griffith. Development of Evidence Statement curation algorithms to aid cancer variant interpretation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 208.\",\"PeriodicalId\":73617,\"journal\":{\"name\":\"Journal of bioinformatics and systems biology : Open access\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioinformatics and systems biology : Open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7445.AM2021-208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioinformatics and systems biology : Open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.AM2021-208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症变异的临床解释(CIViC)知识库(civicdb.org)是一个开放获取、集中的中心,用于结构化、社区策划和专家调节基因组变异与癌症之间的关系。证据来自同行评审的已发表文献,并分为五种类型之一:易感性、诊断性、预后性、预测性(治疗性)或功能性。证据的稳健性通过以下级别的分配来传达:前三个级别来自患者研究(验证,临床,案例研究),临床前,来自体内或体外数据,以及描述间接关联的推论。每个证据项目都需要一份用管理者自己的话撰写的证据声明,总结了关于变异临床影响的来源结果。与ClinGen等组织的合作产生了大量新的策展人,增加了对证据声明中有关数据优先级的详细原则的需求,以简化策展过程。策展社区将受益于更简单、直观的指南,通过适当和一致地策展证据项目所需的复杂决策。我们正在投入大量精力,继续开发直接的证据管理算法(决策树),类似于临床分子检测实验室中用于帮助CIViC策展人的算法。以前发表的关于这些陈述的发展指南是我们证据算法的基础。明确确定了策展人的明显拐点,并为每个拐点记录了具体细节,以优化决策效率。作为主要的证据类型,包括57%的CIViC提交,58%的参考患者试验和92%的临床前提交,预测性证据是我们试点指南的最初重点,随后是诊断和预后。在预测证据类型中,临床试验、案例研究和临床前水平都需要截然不同的证据声明细节,并最终创建三种独立的、独特的建模算法。这些算法的实施将有助于简化策展和专家审查过程。值得注意的是,没有创建模板,因为保存管理员风格和声音对于维护数据库的社区感觉很重要。为了确保最高水平的清晰度,我们的团队正在使用特定的新手和有经验的管理员来协助开发过程。随着这些算法通过试点阶段,它们将作为策展人培训工具进行测试。最终,这些指导方针将用于鼓励策展人的独立性,并加强CIViC中已经包含的证据。引文格式:Jason Saliba, Lana Sheta, Kilannin Krysiak, Arpad Danos, Alex Marr, Erica Barnell, Shahil Pema, Wan-Hsin Lin, Panieh Terraf, Joshua F. McMichael, Cameron J. Grisdale, Shruti Rao, Susanna Kiwala, Adam Coffman, Alex Wagner, Obi L. Griffith, Malachi Griffith。证据陈述管理算法的发展,以帮助癌症变异解释[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):摘要nr 208。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract 208: Development of Evidence Statement curation algorithms to aid cancer variant interpretation
The Clinical Interpretation of Variants in Cancer (CIViC) knowledgebase (civicdb.org) is an open access, centralized hub for structured, community curated and expertly moderated relationships between genomic variants and cancer. Evidence is curated from peer-reviewed, published literature and is classified into one of five Types: Predisposing, Diagnostic, Prognostic, Predictive (therapeutic), or Functional. The robustness of the Evidence is conveyed through the assignment of Levels with the first three derived from patient studies (Validated, Clinical, Case Study), Preclinical, generated from in vivo or in vitro data, and Inferential, which describes indirect associations. Each Evidence Item requires an Evidence Statement written in the curator9s own words summarizing the source9s results regarding the variant9s clinical impact. Collaborations with groups like ClinGen have generated a significant influx of new curators, increasing the demand for detailed principles regarding data prioritization in the Evidence Statement in order to streamline the curation process. The curation community would benefit from simpler, visual guides through the complex decisions needed to appropriately and consistently curate Evidence Items. We are devoting significant effort to continue the development of straightforward Evidence curation algorithms (decision trees) similar to those used in clinical molecular testing labs to aid CIViC curators. Previously published guidelines on development of these statements are the basis of our Evidence algorithms. Obvious inflection points for curators are clearly identified with specific details noted for each to optimize decision efficiency. As the predominant Evidence Type comprising 57% of all CIViC submissions, 58% of referenced patient trials, and 92% of Preclinical submissions, Predictive Evidence is the initial focus of our pilot guidelines with Diagnostic and Prognostic to follow. Within the Predictive Evidence Type, clinical trials, case studies, and preclinical Levels each require vastly different Evidence Statement details and ultimately the creation of three separate, uniquely modeled algorithms. The implementation of these algorithms will assist in streamlining both curation and the expert review process. Notably, a template is not being created, as the preservation of curator style and voice is important to maintain the community feel of the database. To ensure the highest level of clarity, our team is utilizing specific novice and experienced curators to assist with the development process. As these algorithms pass the pilot phase, they are being tested as curator training tools. Ultimately, these guidelines will be used to encourage independence in curators and to enhance the Evidence already contained in CIViC. Citation Format: Jason Saliba, Lana Sheta, Kilannin Krysiak, Arpad Danos, Alex Marr, Erica Barnell, Shahil Pema, Wan-Hsin Lin, Panieh Terraf, Joshua F. McMichael, Cameron J. Grisdale, Shruti Rao, Susanna Kiwala, Adam Coffman, Alex Wagner, Obi L. Griffith, Malachi Griffith. Development of Evidence Statement curation algorithms to aid cancer variant interpretation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 208.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear Regression of Sampling Distributions of the Mean. Transcriptional and Translational Regulation of Differentially Expressed Genes in Yucatan Miniswine Brain Tissues following Traumatic Brain Injury. Deciphering Collagen Phenotype Dynamics Regulators: Insights from In-Silico Analysis. The Growing Liberality Observed in Primary Animal and Plant Cultures is Common to the Social Amoeba. Role of Transcription Factors and MicroRNAs in Regulating Fibroblast Reprogramming in Wound Healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1