无线传感器网络中的能量感知分布式聚类算法

Xu Jianbo, He Yong, L. Renfa
{"title":"无线传感器网络中的能量感知分布式聚类算法","authors":"Xu Jianbo, He Yong, L. Renfa","doi":"10.1109/CSSE.2008.782","DOIUrl":null,"url":null,"abstract":"We proposed a distributed energy saving clustering algorithm BPEC. Cluster-heads are elected by two probabilities. The primary probability is based on the ratio between average residual energy of neighbor nodes and itself residual energy. The subsidiary probability is the node's degree. By using BPEC algorithm, the entire network broadcasting complexity is O (n), the entire network computing complexity is O (1). The cluster set generated by BPEC is proved to be a Maximum Independent Set. The experimental results show that when nodes is enough, the cluster set size is close to the theoretical values.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"15 1","pages":"528-531"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Energy-Aware Distributed Clustering Algorithm in Wireless Sensor Networks\",\"authors\":\"Xu Jianbo, He Yong, L. Renfa\",\"doi\":\"10.1109/CSSE.2008.782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a distributed energy saving clustering algorithm BPEC. Cluster-heads are elected by two probabilities. The primary probability is based on the ratio between average residual energy of neighbor nodes and itself residual energy. The subsidiary probability is the node's degree. By using BPEC algorithm, the entire network broadcasting complexity is O (n), the entire network computing complexity is O (1). The cluster set generated by BPEC is proved to be a Maximum Independent Set. The experimental results show that when nodes is enough, the cluster set size is close to the theoretical values.\",\"PeriodicalId\":6460,\"journal\":{\"name\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"15 1\",\"pages\":\"528-531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSSE.2008.782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSSE.2008.782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种分布式节能聚类算法BPEC。簇头由两种概率选出。一次概率是基于相邻节点的平均剩余能量与自身剩余能量的比值。辅助概率是节点的度。通过使用BPEC算法,整个网络的广播复杂度为O (n),整个网络的计算复杂度为O(1),证明了BPEC生成的聚类集是一个极大独立集。实验结果表明,当节点足够多时,聚类集大小接近理论值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Energy-Aware Distributed Clustering Algorithm in Wireless Sensor Networks
We proposed a distributed energy saving clustering algorithm BPEC. Cluster-heads are elected by two probabilities. The primary probability is based on the ratio between average residual energy of neighbor nodes and itself residual energy. The subsidiary probability is the node's degree. By using BPEC algorithm, the entire network broadcasting complexity is O (n), the entire network computing complexity is O (1). The cluster set generated by BPEC is proved to be a Maximum Independent Set. The experimental results show that when nodes is enough, the cluster set size is close to the theoretical values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1