{"title":"被动磁检测技术扫描钢筋纵向缺陷部位的磁数据模式特征","authors":"M. Mosharafi, S. Mahbaz, M. Dusseault","doi":"10.32389/jeeg20-031","DOIUrl":null,"url":null,"abstract":"Reinforced concrete is a versatile modern construction material. Despite its advantages as a composite material, corrosion of the embedded reinforcing steel leads to infrastructure deterioration and loss of service. Non-Destructive Testing (NDT) methods are required to quantify the reinforcement condition, and to help manage human and financial risks arising from unexpected outright failure or service restrictions. Reinforcement condition can be assessed using a novel, time- and cost-efficient NDT method based on the self-magnetic behaviour of ferromagnetic materials. In this study, the magnetic properties of three similar rebars, each having three similar sized longitudinal defects, are recorded and assessed through experiments and a numerical simulation model. Strong correspondence is demonstrated between the magnetic properties from numerical simulation and from the experimental objects. For instance, applying the experimentally obtained defect detection threshold to the mathematically simulated results allows accurate defect detection in the simulations, showing that self-magnetic behavior is a powerful tool for condition assessment of ferromagnetic reinforcing materials.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"16 1","pages":"513-528"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Magnetic Data Pattern Features at Longitudinal Defect Sites in Rebars Scanned by a Passive Magnetic Inspection Technology\",\"authors\":\"M. Mosharafi, S. Mahbaz, M. Dusseault\",\"doi\":\"10.32389/jeeg20-031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced concrete is a versatile modern construction material. Despite its advantages as a composite material, corrosion of the embedded reinforcing steel leads to infrastructure deterioration and loss of service. Non-Destructive Testing (NDT) methods are required to quantify the reinforcement condition, and to help manage human and financial risks arising from unexpected outright failure or service restrictions. Reinforcement condition can be assessed using a novel, time- and cost-efficient NDT method based on the self-magnetic behaviour of ferromagnetic materials. In this study, the magnetic properties of three similar rebars, each having three similar sized longitudinal defects, are recorded and assessed through experiments and a numerical simulation model. Strong correspondence is demonstrated between the magnetic properties from numerical simulation and from the experimental objects. For instance, applying the experimentally obtained defect detection threshold to the mathematically simulated results allows accurate defect detection in the simulations, showing that self-magnetic behavior is a powerful tool for condition assessment of ferromagnetic reinforcing materials.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"16 1\",\"pages\":\"513-528\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg20-031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg20-031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Magnetic Data Pattern Features at Longitudinal Defect Sites in Rebars Scanned by a Passive Magnetic Inspection Technology
Reinforced concrete is a versatile modern construction material. Despite its advantages as a composite material, corrosion of the embedded reinforcing steel leads to infrastructure deterioration and loss of service. Non-Destructive Testing (NDT) methods are required to quantify the reinforcement condition, and to help manage human and financial risks arising from unexpected outright failure or service restrictions. Reinforcement condition can be assessed using a novel, time- and cost-efficient NDT method based on the self-magnetic behaviour of ferromagnetic materials. In this study, the magnetic properties of three similar rebars, each having three similar sized longitudinal defects, are recorded and assessed through experiments and a numerical simulation model. Strong correspondence is demonstrated between the magnetic properties from numerical simulation and from the experimental objects. For instance, applying the experimentally obtained defect detection threshold to the mathematically simulated results allows accurate defect detection in the simulations, showing that self-magnetic behavior is a powerful tool for condition assessment of ferromagnetic reinforcing materials.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.