{"title":"基于改进特征金字塔的铝型材缺陷检测","authors":"Jie Wang, Yan Zhang, Feng Pan, Lin Wang","doi":"10.1051/matecconf/202338001016","DOIUrl":null,"url":null,"abstract":"For the surface defects of aluminum profiles, there are problems of multi-scale, small object and irregular shape. This paper proposes a defects detection algorithm based on improved feature pyramid. This method compresses and saves the feature information extracted by the backbone networks, and calculates the similarity between deep and shallow features, so as to alleviate the phenomenon of loss of feature information and weakening of feature expression ability, thereby solving the problem of multi-scale and small object. At the same time, deformable convolution is introduced to enhance the feature extraction ability of the model and alleviate the detection problems caused by irregularly shaped defects. To verify the effectiveness of the proposed method, Faster R-CNN was used as the basic detection algorithm to conduct ablation experiments, and compared with the classical detection algorithm, the accuracy rate was as high as 72.8%. The experimental results show that the proposed method has a good performance on the task of aluminum profile defects detection, and is superior to the comparative detection algorithms.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Detection of Aluminum Profiles based on Improved Feature Pyramids\",\"authors\":\"Jie Wang, Yan Zhang, Feng Pan, Lin Wang\",\"doi\":\"10.1051/matecconf/202338001016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the surface defects of aluminum profiles, there are problems of multi-scale, small object and irregular shape. This paper proposes a defects detection algorithm based on improved feature pyramid. This method compresses and saves the feature information extracted by the backbone networks, and calculates the similarity between deep and shallow features, so as to alleviate the phenomenon of loss of feature information and weakening of feature expression ability, thereby solving the problem of multi-scale and small object. At the same time, deformable convolution is introduced to enhance the feature extraction ability of the model and alleviate the detection problems caused by irregularly shaped defects. To verify the effectiveness of the proposed method, Faster R-CNN was used as the basic detection algorithm to conduct ablation experiments, and compared with the classical detection algorithm, the accuracy rate was as high as 72.8%. The experimental results show that the proposed method has a good performance on the task of aluminum profile defects detection, and is superior to the comparative detection algorithms.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202338001016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202338001016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defect Detection of Aluminum Profiles based on Improved Feature Pyramids
For the surface defects of aluminum profiles, there are problems of multi-scale, small object and irregular shape. This paper proposes a defects detection algorithm based on improved feature pyramid. This method compresses and saves the feature information extracted by the backbone networks, and calculates the similarity between deep and shallow features, so as to alleviate the phenomenon of loss of feature information and weakening of feature expression ability, thereby solving the problem of multi-scale and small object. At the same time, deformable convolution is introduced to enhance the feature extraction ability of the model and alleviate the detection problems caused by irregularly shaped defects. To verify the effectiveness of the proposed method, Faster R-CNN was used as the basic detection algorithm to conduct ablation experiments, and compared with the classical detection algorithm, the accuracy rate was as high as 72.8%. The experimental results show that the proposed method has a good performance on the task of aluminum profile defects detection, and is superior to the comparative detection algorithms.
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.