Ya Tian, Fu-jian Zhou, M. Aljawad, R. Weijermars, Mingjiang Wu, Ben Li
{"title":"破碎微支撑剂提高水力微裂缝导流能力的实验室试验和井速模型","authors":"Ya Tian, Fu-jian Zhou, M. Aljawad, R. Weijermars, Mingjiang Wu, Ben Li","doi":"10.2523/iptc-22209-ms","DOIUrl":null,"url":null,"abstract":"\n This study proposes an innovative crushing rate evaluation method for micro-proppants by analyzing hydraulic crushing and steel crushing rates. The effectiveness of using micro-proppants to increase the drainage area of the micro-fractures network was also proved. Our results show that for micro-proppants, there occur two types of crushing evolution during the fracturing process. Under a load of 70 MPa, the hydraulic crushing rate is about 20%, while the steel crushing rate is more than 60%. The critical closure stress of micro-proppants is 50 MPa, which can be used to depths up to 4,200 m. Numerical simulation results showed that due to the presence of micro-proppants, the effectively propped area of the fracture network would sharply increase, accompanied by an over 40% increase in the initial hydrocarbon production rate. The later, steady production period will show a sustained increase of more than 20%.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Laboratory Tests and Well Rate Models of Crushed Micro-Proppants to Improve Conductivity of Hydraulic Microfractures\",\"authors\":\"Ya Tian, Fu-jian Zhou, M. Aljawad, R. Weijermars, Mingjiang Wu, Ben Li\",\"doi\":\"10.2523/iptc-22209-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study proposes an innovative crushing rate evaluation method for micro-proppants by analyzing hydraulic crushing and steel crushing rates. The effectiveness of using micro-proppants to increase the drainage area of the micro-fractures network was also proved. Our results show that for micro-proppants, there occur two types of crushing evolution during the fracturing process. Under a load of 70 MPa, the hydraulic crushing rate is about 20%, while the steel crushing rate is more than 60%. The critical closure stress of micro-proppants is 50 MPa, which can be used to depths up to 4,200 m. Numerical simulation results showed that due to the presence of micro-proppants, the effectively propped area of the fracture network would sharply increase, accompanied by an over 40% increase in the initial hydrocarbon production rate. The later, steady production period will show a sustained increase of more than 20%.\",\"PeriodicalId\":10974,\"journal\":{\"name\":\"Day 2 Tue, February 22, 2022\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, February 22, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22209-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, February 22, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22209-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laboratory Tests and Well Rate Models of Crushed Micro-Proppants to Improve Conductivity of Hydraulic Microfractures
This study proposes an innovative crushing rate evaluation method for micro-proppants by analyzing hydraulic crushing and steel crushing rates. The effectiveness of using micro-proppants to increase the drainage area of the micro-fractures network was also proved. Our results show that for micro-proppants, there occur two types of crushing evolution during the fracturing process. Under a load of 70 MPa, the hydraulic crushing rate is about 20%, while the steel crushing rate is more than 60%. The critical closure stress of micro-proppants is 50 MPa, which can be used to depths up to 4,200 m. Numerical simulation results showed that due to the presence of micro-proppants, the effectively propped area of the fracture network would sharply increase, accompanied by an over 40% increase in the initial hydrocarbon production rate. The later, steady production period will show a sustained increase of more than 20%.