{"title":"面向移动蜂窝网络的智能地理负载均衡","authors":"L. Du, J. Bigham, L. Cuthbert","doi":"10.1109/TSMCC.2003.818495","DOIUrl":null,"url":null,"abstract":"We investigate a novel geographic load-balancing scheme for cellular networks that intelligently changes cellular coverage according to the geographic traffic distribution in real time. A cooperative negotiation approach for the real-time control of cellular network coverage is described. The performance of the whole cellular network is improved by contracting and shaping the antenna radiation pattern around a traffic \"hot spot\" and expanding adjacent cells coverage to fill in the coverage loss. By the use of real time cooperative negotiations between base stations and associated antennas, a near optimal local coverage agreement is reached in the context of the whole cellular network. Results showing the advantage of this technique are presented. Global optimization using constrained real-coded genetic algorithms (RCGA) provides a benchmark. Convergence using penalty functions to manage the constraints was first investigated but gave poor results. A transformation of the problem space is used to remove the constraints, and a criterion that is necessary for successful transformations is explained.","PeriodicalId":55005,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","volume":"21 1","pages":"480-491"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Towards intelligent geographic load balancing for mobile cellular networks\",\"authors\":\"L. Du, J. Bigham, L. Cuthbert\",\"doi\":\"10.1109/TSMCC.2003.818495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a novel geographic load-balancing scheme for cellular networks that intelligently changes cellular coverage according to the geographic traffic distribution in real time. A cooperative negotiation approach for the real-time control of cellular network coverage is described. The performance of the whole cellular network is improved by contracting and shaping the antenna radiation pattern around a traffic \\\"hot spot\\\" and expanding adjacent cells coverage to fill in the coverage loss. By the use of real time cooperative negotiations between base stations and associated antennas, a near optimal local coverage agreement is reached in the context of the whole cellular network. Results showing the advantage of this technique are presented. Global optimization using constrained real-coded genetic algorithms (RCGA) provides a benchmark. Convergence using penalty functions to manage the constraints was first investigated but gave poor results. A transformation of the problem space is used to remove the constraints, and a criterion that is necessary for successful transformations is explained.\",\"PeriodicalId\":55005,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"volume\":\"21 1\",\"pages\":\"480-491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCC.2003.818495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCC.2003.818495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards intelligent geographic load balancing for mobile cellular networks
We investigate a novel geographic load-balancing scheme for cellular networks that intelligently changes cellular coverage according to the geographic traffic distribution in real time. A cooperative negotiation approach for the real-time control of cellular network coverage is described. The performance of the whole cellular network is improved by contracting and shaping the antenna radiation pattern around a traffic "hot spot" and expanding adjacent cells coverage to fill in the coverage loss. By the use of real time cooperative negotiations between base stations and associated antennas, a near optimal local coverage agreement is reached in the context of the whole cellular network. Results showing the advantage of this technique are presented. Global optimization using constrained real-coded genetic algorithms (RCGA) provides a benchmark. Convergence using penalty functions to manage the constraints was first investigated but gave poor results. A transformation of the problem space is used to remove the constraints, and a criterion that is necessary for successful transformations is explained.