{"title":"用扩散键连接SiC/Ti-6Al-4V连续复合材料","authors":"Shinji Fukumoto, Akio Hirose, Kojiro F. Kobayashi","doi":"10.1016/0961-9526(95)00060-Z","DOIUrl":null,"url":null,"abstract":"<div><p>The continuous SiC/Ti-6Al-4V composite was fabricated through a hot pressing procedure. Solid state diffusion (SSD) and transient liquid phase (TLP) bonding processes were applied to join continuous SiC/Ti-6Al-4V composites to a Ti-6Al-4V plate and to themselves. The butt joint strength of the composite to the Ti-6Al-4V plate reached a maximum of approximately 850 MPa for <em>V</em><sub>f</sub> = 30% composite. The maximum strength is 90% of the tensile strength of the Ti-6Al-4V alloy. When the composite was bonded directly to itself, a sound joint was not obtained. A joint strength equal to composite Ti-6Al-4V's joint strength was obtained using Ti-6Al-4V and Ti-Cu-Zr thin foils as filler metal. However, a fracture occurred not at the base metal but at the bonding interface.</p><p>Scarf joint forms were also used to join a composite to a Ti-6Al-4V plate and to itself. When the scarf angle was less than 12°, the composite-composite joint strength reached a maximum value of 1380 MPa corresponding to 80% tensile strength of the base material. The composite-composite scarf joint was fractured at base material. The composite-Ti-6Al-4V scarf joint was also fractured at the Ti-6Al-4V plate when the scarf angle was less than 12°. It is possible to join the SiC/Ti-6Al-4V composite without any reinforcing parts, such as a doubler.</p></div>","PeriodicalId":100298,"journal":{"name":"Composites Engineering","volume":"5 8","pages":"Pages 1081-1089"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-9526(95)00060-Z","citationCount":"3","resultStr":"{\"title\":\"An effective joint of continuous SiC/Ti-6Al-4V composites by diffusion bonding\",\"authors\":\"Shinji Fukumoto, Akio Hirose, Kojiro F. Kobayashi\",\"doi\":\"10.1016/0961-9526(95)00060-Z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The continuous SiC/Ti-6Al-4V composite was fabricated through a hot pressing procedure. Solid state diffusion (SSD) and transient liquid phase (TLP) bonding processes were applied to join continuous SiC/Ti-6Al-4V composites to a Ti-6Al-4V plate and to themselves. The butt joint strength of the composite to the Ti-6Al-4V plate reached a maximum of approximately 850 MPa for <em>V</em><sub>f</sub> = 30% composite. The maximum strength is 90% of the tensile strength of the Ti-6Al-4V alloy. When the composite was bonded directly to itself, a sound joint was not obtained. A joint strength equal to composite Ti-6Al-4V's joint strength was obtained using Ti-6Al-4V and Ti-Cu-Zr thin foils as filler metal. However, a fracture occurred not at the base metal but at the bonding interface.</p><p>Scarf joint forms were also used to join a composite to a Ti-6Al-4V plate and to itself. When the scarf angle was less than 12°, the composite-composite joint strength reached a maximum value of 1380 MPa corresponding to 80% tensile strength of the base material. The composite-composite scarf joint was fractured at base material. The composite-Ti-6Al-4V scarf joint was also fractured at the Ti-6Al-4V plate when the scarf angle was less than 12°. It is possible to join the SiC/Ti-6Al-4V composite without any reinforcing parts, such as a doubler.</p></div>\",\"PeriodicalId\":100298,\"journal\":{\"name\":\"Composites Engineering\",\"volume\":\"5 8\",\"pages\":\"Pages 1081-1089\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0961-9526(95)00060-Z\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/096195269500060Z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096195269500060Z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An effective joint of continuous SiC/Ti-6Al-4V composites by diffusion bonding
The continuous SiC/Ti-6Al-4V composite was fabricated through a hot pressing procedure. Solid state diffusion (SSD) and transient liquid phase (TLP) bonding processes were applied to join continuous SiC/Ti-6Al-4V composites to a Ti-6Al-4V plate and to themselves. The butt joint strength of the composite to the Ti-6Al-4V plate reached a maximum of approximately 850 MPa for Vf = 30% composite. The maximum strength is 90% of the tensile strength of the Ti-6Al-4V alloy. When the composite was bonded directly to itself, a sound joint was not obtained. A joint strength equal to composite Ti-6Al-4V's joint strength was obtained using Ti-6Al-4V and Ti-Cu-Zr thin foils as filler metal. However, a fracture occurred not at the base metal but at the bonding interface.
Scarf joint forms were also used to join a composite to a Ti-6Al-4V plate and to itself. When the scarf angle was less than 12°, the composite-composite joint strength reached a maximum value of 1380 MPa corresponding to 80% tensile strength of the base material. The composite-composite scarf joint was fractured at base material. The composite-Ti-6Al-4V scarf joint was also fractured at the Ti-6Al-4V plate when the scarf angle was less than 12°. It is possible to join the SiC/Ti-6Al-4V composite without any reinforcing parts, such as a doubler.