Seyyed Hadi Seifi, A. Yadollahi, Wenmeng Tian, H. Doude, V. H. Hammond, L. Bian
{"title":"建立工艺-缺陷-性能关系的增材制造零件原位无损疲劳寿命预测","authors":"Seyyed Hadi Seifi, A. Yadollahi, Wenmeng Tian, H. Doude, V. H. Hammond, L. Bian","doi":"10.1002/aisy.202000268","DOIUrl":null,"url":null,"abstract":"The presence of process‐induced internal defects (i.e., pores, microcracks, and lack‐of‐fusions) significantly deteriorates the structural durability of parts fabricated by additive manufacturing. However, traditional defects characterization techniques, such as X‐ray CT and ultrasonic scanning, are costly and time‐consuming. There is a research gap in the nondestructive evaluation of fatigue performance directly from the process signature of laser‐based additive manufacturing processes. Herein, a novel two‐phase modeling methodology is proposed for fatigue life prediction based on in situ monitoring of thermal history. Phase (I) includes a convolutional neural network designed to detect the relative size of the defects (i.e., small gas pores and large lack‐of‐fusions) by leveraging processed thermal images. Subsequently, a fatigue‐life prediction model is trained in Phase (II) by incorporating the defect characteristics extracted from Phase (I) to evaluate the fatigue performance. Estimating defect characteristics from the in situ thermal history facilitates the fatigue predicting process.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"In Situ Nondestructive Fatigue‐Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship\",\"authors\":\"Seyyed Hadi Seifi, A. Yadollahi, Wenmeng Tian, H. Doude, V. H. Hammond, L. Bian\",\"doi\":\"10.1002/aisy.202000268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of process‐induced internal defects (i.e., pores, microcracks, and lack‐of‐fusions) significantly deteriorates the structural durability of parts fabricated by additive manufacturing. However, traditional defects characterization techniques, such as X‐ray CT and ultrasonic scanning, are costly and time‐consuming. There is a research gap in the nondestructive evaluation of fatigue performance directly from the process signature of laser‐based additive manufacturing processes. Herein, a novel two‐phase modeling methodology is proposed for fatigue life prediction based on in situ monitoring of thermal history. Phase (I) includes a convolutional neural network designed to detect the relative size of the defects (i.e., small gas pores and large lack‐of‐fusions) by leveraging processed thermal images. Subsequently, a fatigue‐life prediction model is trained in Phase (II) by incorporating the defect characteristics extracted from Phase (I) to evaluate the fatigue performance. Estimating defect characteristics from the in situ thermal history facilitates the fatigue predicting process.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Situ Nondestructive Fatigue‐Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship
The presence of process‐induced internal defects (i.e., pores, microcracks, and lack‐of‐fusions) significantly deteriorates the structural durability of parts fabricated by additive manufacturing. However, traditional defects characterization techniques, such as X‐ray CT and ultrasonic scanning, are costly and time‐consuming. There is a research gap in the nondestructive evaluation of fatigue performance directly from the process signature of laser‐based additive manufacturing processes. Herein, a novel two‐phase modeling methodology is proposed for fatigue life prediction based on in situ monitoring of thermal history. Phase (I) includes a convolutional neural network designed to detect the relative size of the defects (i.e., small gas pores and large lack‐of‐fusions) by leveraging processed thermal images. Subsequently, a fatigue‐life prediction model is trained in Phase (II) by incorporating the defect characteristics extracted from Phase (I) to evaluate the fatigue performance. Estimating defect characteristics from the in situ thermal history facilitates the fatigue predicting process.