使用深度强化学习的视觉监控

Keong-Hun Choi, J. Ha
{"title":"使用深度强化学习的视觉监控","authors":"Keong-Hun Choi, J. Ha","doi":"10.23919/ICCAS50221.2020.9268429","DOIUrl":null,"url":null,"abstract":"Visual surveillance aims a robust detection of foreground objects, and traditional algorithms usually use a background model image. A current is compared with the background model image. In this paper, we present a visual surveillance algorithm, which determines the parameters in Vibe using deep reinforcement learning. We apply DQN to determine three parameters in Vibe algorithm. We present a policy model which is composed of encoder and decoder type network. Experimental results shows the feasibility of the presented algorithm.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"18 1","pages":"289-291"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Surveillance using Deep Reinforcement Learning\",\"authors\":\"Keong-Hun Choi, J. Ha\",\"doi\":\"10.23919/ICCAS50221.2020.9268429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual surveillance aims a robust detection of foreground objects, and traditional algorithms usually use a background model image. A current is compared with the background model image. In this paper, we present a visual surveillance algorithm, which determines the parameters in Vibe using deep reinforcement learning. We apply DQN to determine three parameters in Vibe algorithm. We present a policy model which is composed of encoder and decoder type network. Experimental results shows the feasibility of the presented algorithm.\",\"PeriodicalId\":6732,\"journal\":{\"name\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"18 1\",\"pages\":\"289-291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS50221.2020.9268429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉监控的目标是鲁棒检测前景目标,传统的算法通常使用背景模型图像。将电流与背景模型图像进行比较。在本文中,我们提出了一种视觉监控算法,该算法使用深度强化学习来确定Vibe中的参数。我们应用DQN来确定Vibe算法中的三个参数。提出了一种由编码器和解码器网络组成的策略模型。实验结果表明了该算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Surveillance using Deep Reinforcement Learning
Visual surveillance aims a robust detection of foreground objects, and traditional algorithms usually use a background model image. A current is compared with the background model image. In this paper, we present a visual surveillance algorithm, which determines the parameters in Vibe using deep reinforcement learning. We apply DQN to determine three parameters in Vibe algorithm. We present a policy model which is composed of encoder and decoder type network. Experimental results shows the feasibility of the presented algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time quadrotor actuator fault detection and isolation using multivariate statistical analysis techniques with sensor measurements Autonomous docking of an Unmanned Surface Vehicle based on Reachability Analysis Clutch Torque Estimation of Ball-ramp Dual Clutch Transmission using Higher Order Disturbance Observer Robust Traffic Light Detection and Classification Under Day and Night Conditions Visual Surveillance using Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1