{"title":"Hubbard模型密度矩阵嵌入理论的比较研究","authors":"M. Kawano, C. Hotta","doi":"10.1103/physrevb.102.235111","DOIUrl":null,"url":null,"abstract":"We examine the performance of the density matrix embedding theory (DMET) recently proposed in [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)]. The core of this method is to find a proper one-body potential that generates a good trial wave function for projecting a large scale original Hamiltonian to a local subsystem with a small number of basis. The resultant ground state of the projected Hamiltonian can locally approximate the true ground state. However, the lack of the variational principle makes it difficult to judge the quality of the choice of the potential. Here we focus on the entanglement spectrum (ES) as a judging criterion; accurate evaluation of the ES guarantees that the corresponding reduced density matrix well reproduces all physical quantities on the local subsystem. We apply the DMET to the Hubbard model on the one-dimensional chain, zigzag chain, and triangular lattice and test several variants of potentials and cost functions. It turns out that a symmetric potential reproduces the ES of the phase that continues from a noninteracting limit. The Mott transition as well as symmetry-breaking transitions can be detected by the singularities in the ES. However, the details of the ES in the strongly interacting parameter region depends much on these choices, meaning that the present algorithm allowing for numerous variants of the DMET is insufficient to fully fix the quantum many-body problem.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative study of the density matrix embedding theory for Hubbard models\",\"authors\":\"M. Kawano, C. Hotta\",\"doi\":\"10.1103/physrevb.102.235111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the performance of the density matrix embedding theory (DMET) recently proposed in [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)]. The core of this method is to find a proper one-body potential that generates a good trial wave function for projecting a large scale original Hamiltonian to a local subsystem with a small number of basis. The resultant ground state of the projected Hamiltonian can locally approximate the true ground state. However, the lack of the variational principle makes it difficult to judge the quality of the choice of the potential. Here we focus on the entanglement spectrum (ES) as a judging criterion; accurate evaluation of the ES guarantees that the corresponding reduced density matrix well reproduces all physical quantities on the local subsystem. We apply the DMET to the Hubbard model on the one-dimensional chain, zigzag chain, and triangular lattice and test several variants of potentials and cost functions. It turns out that a symmetric potential reproduces the ES of the phase that continues from a noninteracting limit. The Mott transition as well as symmetry-breaking transitions can be detected by the singularities in the ES. However, the details of the ES in the strongly interacting parameter region depends much on these choices, meaning that the present algorithm allowing for numerous variants of the DMET is insufficient to fully fix the quantum many-body problem.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.235111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.235111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative study of the density matrix embedding theory for Hubbard models
We examine the performance of the density matrix embedding theory (DMET) recently proposed in [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)]. The core of this method is to find a proper one-body potential that generates a good trial wave function for projecting a large scale original Hamiltonian to a local subsystem with a small number of basis. The resultant ground state of the projected Hamiltonian can locally approximate the true ground state. However, the lack of the variational principle makes it difficult to judge the quality of the choice of the potential. Here we focus on the entanglement spectrum (ES) as a judging criterion; accurate evaluation of the ES guarantees that the corresponding reduced density matrix well reproduces all physical quantities on the local subsystem. We apply the DMET to the Hubbard model on the one-dimensional chain, zigzag chain, and triangular lattice and test several variants of potentials and cost functions. It turns out that a symmetric potential reproduces the ES of the phase that continues from a noninteracting limit. The Mott transition as well as symmetry-breaking transitions can be detected by the singularities in the ES. However, the details of the ES in the strongly interacting parameter region depends much on these choices, meaning that the present algorithm allowing for numerous variants of the DMET is insufficient to fully fix the quantum many-body problem.