{"title":"BESSY II固态量子和能量材料的RIXS和XPS终端站","authors":"Deniz P. Wong, C. Schulz, M. Bartkowiak","doi":"10.17815/JLSRF-7-177","DOIUrl":null,"url":null,"abstract":"PEAXIS (Photo Electron Analysis and resonant X-ray Inelastic Spectroscopy) is a dedicated endstation installed at the beamline U41-PEAXIS that offers high resolution soft X-ray spectroscopy measurements with incident photon energies ranging from 180 – 1600 eV. The endstation combines two X-ray spectroscopic techniques, X-ray photoelectron spectroscopy (XPS) and resonant inelastic soft X-ray scattering (RIXS), which are important for probing the electronic structure and local and collective excitations of solid-state materials. It features a continuous variation of scattering angle under UHV conditions for wave vector-resolved studies and a modular sample environment that allows investigation in the temperature range between 10 K and 1000 K.","PeriodicalId":16282,"journal":{"name":"Journal of large-scale research facilities JLSRF","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEAXIS: A RIXS and XPS Endstation for Solid-State Quantum and Energy Materials at BESSY II\",\"authors\":\"Deniz P. Wong, C. Schulz, M. Bartkowiak\",\"doi\":\"10.17815/JLSRF-7-177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PEAXIS (Photo Electron Analysis and resonant X-ray Inelastic Spectroscopy) is a dedicated endstation installed at the beamline U41-PEAXIS that offers high resolution soft X-ray spectroscopy measurements with incident photon energies ranging from 180 – 1600 eV. The endstation combines two X-ray spectroscopic techniques, X-ray photoelectron spectroscopy (XPS) and resonant inelastic soft X-ray scattering (RIXS), which are important for probing the electronic structure and local and collective excitations of solid-state materials. It features a continuous variation of scattering angle under UHV conditions for wave vector-resolved studies and a modular sample environment that allows investigation in the temperature range between 10 K and 1000 K.\",\"PeriodicalId\":16282,\"journal\":{\"name\":\"Journal of large-scale research facilities JLSRF\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of large-scale research facilities JLSRF\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17815/JLSRF-7-177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of large-scale research facilities JLSRF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/JLSRF-7-177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PEAXIS: A RIXS and XPS Endstation for Solid-State Quantum and Energy Materials at BESSY II
PEAXIS (Photo Electron Analysis and resonant X-ray Inelastic Spectroscopy) is a dedicated endstation installed at the beamline U41-PEAXIS that offers high resolution soft X-ray spectroscopy measurements with incident photon energies ranging from 180 – 1600 eV. The endstation combines two X-ray spectroscopic techniques, X-ray photoelectron spectroscopy (XPS) and resonant inelastic soft X-ray scattering (RIXS), which are important for probing the electronic structure and local and collective excitations of solid-state materials. It features a continuous variation of scattering angle under UHV conditions for wave vector-resolved studies and a modular sample environment that allows investigation in the temperature range between 10 K and 1000 K.