Arthicha Srisuchinnawong, Dong Shao, Potiwat Ngamkajornwiwat, Pitiwut Teerakittikul, Z. Dai, A. Ji, P. Manoonpong
{"title":"壁虎机器人步态生成与自适应的神经控制","authors":"Arthicha Srisuchinnawong, Dong Shao, Potiwat Ngamkajornwiwat, Pitiwut Teerakittikul, Z. Dai, A. Ji, P. Manoonpong","doi":"10.1109/ICAR46387.2019.8981580","DOIUrl":null,"url":null,"abstract":"Geckos are highly adaptable creatures, able to scale a variety of slopes, including walls, and can change their gait depending on their environment. Roboticists have tried to implement this behaviour in gecko robots. So far, an open-loop controlled robot without a tail that uses only one specific gait can climb to a 50° slope. In this paper, we propose neural control that allows a gecko robot to climb to a 70° slope by generating different gaits for various slope angles. The control consists of three main components: a central pattern generator (CPG) for generating various rhythmic patterns, CPG post-processing for shaping the CPG signals, and a delay line for transmitting the shaped CPG signals to drive the legs of the gecko robot. The robot uses a body inclination sensor to provide sensory feedback for gait adaptation. When the incline is below 35°, the robot walks with a predefined fast trot gait. If the incline is increased, it will change its gait from the trot gait to an intermediate gait, followed by a slow wave gait, which is both the most stable and the slowest gait, for climbing the steepest slopes. Using this walking strategy, the robot can efficiently climb a variety of slopes using different gaits and can automatically adapt its gait to maximise speed while ensuring stability.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"36 1","pages":"468-473"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neural Control for Gait Generation and Adaptation of a Gecko Robot\",\"authors\":\"Arthicha Srisuchinnawong, Dong Shao, Potiwat Ngamkajornwiwat, Pitiwut Teerakittikul, Z. Dai, A. Ji, P. Manoonpong\",\"doi\":\"10.1109/ICAR46387.2019.8981580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geckos are highly adaptable creatures, able to scale a variety of slopes, including walls, and can change their gait depending on their environment. Roboticists have tried to implement this behaviour in gecko robots. So far, an open-loop controlled robot without a tail that uses only one specific gait can climb to a 50° slope. In this paper, we propose neural control that allows a gecko robot to climb to a 70° slope by generating different gaits for various slope angles. The control consists of three main components: a central pattern generator (CPG) for generating various rhythmic patterns, CPG post-processing for shaping the CPG signals, and a delay line for transmitting the shaped CPG signals to drive the legs of the gecko robot. The robot uses a body inclination sensor to provide sensory feedback for gait adaptation. When the incline is below 35°, the robot walks with a predefined fast trot gait. If the incline is increased, it will change its gait from the trot gait to an intermediate gait, followed by a slow wave gait, which is both the most stable and the slowest gait, for climbing the steepest slopes. Using this walking strategy, the robot can efficiently climb a variety of slopes using different gaits and can automatically adapt its gait to maximise speed while ensuring stability.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"36 1\",\"pages\":\"468-473\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Control for Gait Generation and Adaptation of a Gecko Robot
Geckos are highly adaptable creatures, able to scale a variety of slopes, including walls, and can change their gait depending on their environment. Roboticists have tried to implement this behaviour in gecko robots. So far, an open-loop controlled robot without a tail that uses only one specific gait can climb to a 50° slope. In this paper, we propose neural control that allows a gecko robot to climb to a 70° slope by generating different gaits for various slope angles. The control consists of three main components: a central pattern generator (CPG) for generating various rhythmic patterns, CPG post-processing for shaping the CPG signals, and a delay line for transmitting the shaped CPG signals to drive the legs of the gecko robot. The robot uses a body inclination sensor to provide sensory feedback for gait adaptation. When the incline is below 35°, the robot walks with a predefined fast trot gait. If the incline is increased, it will change its gait from the trot gait to an intermediate gait, followed by a slow wave gait, which is both the most stable and the slowest gait, for climbing the steepest slopes. Using this walking strategy, the robot can efficiently climb a variety of slopes using different gaits and can automatically adapt its gait to maximise speed while ensuring stability.