{"title":"一种基于二进制的HMAX对象识别模型","authors":"Tae-Koo Kang, Huazhen Zhang, D. Pae, M. Lim","doi":"10.1109/ICCAS.2015.7364837","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast binary based HMAX model (B-HMAX). In our method, we detect corner based interest points after the second layer C1 to extract fewer numbers of features with better distinctiveness, and use binary string to describe the image patches extracted around detected corners, then use hamming distance for matching between two patches in the third layer S2, which is much faster than Euclidean method. Experimental results demonstrate that our proposed B-HMAX model can significantly reduce the total process time, while keeping the accuracy performance as the same with or better than standard HMAX.","PeriodicalId":6641,"journal":{"name":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","volume":"37 1","pages":"1297-1301"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A binary based HMAX model for object recognition\",\"authors\":\"Tae-Koo Kang, Huazhen Zhang, D. Pae, M. Lim\",\"doi\":\"10.1109/ICCAS.2015.7364837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fast binary based HMAX model (B-HMAX). In our method, we detect corner based interest points after the second layer C1 to extract fewer numbers of features with better distinctiveness, and use binary string to describe the image patches extracted around detected corners, then use hamming distance for matching between two patches in the third layer S2, which is much faster than Euclidean method. Experimental results demonstrate that our proposed B-HMAX model can significantly reduce the total process time, while keeping the accuracy performance as the same with or better than standard HMAX.\",\"PeriodicalId\":6641,\"journal\":{\"name\":\"2015 15th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"37 1\",\"pages\":\"1297-1301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2015.7364837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2015.7364837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we propose a fast binary based HMAX model (B-HMAX). In our method, we detect corner based interest points after the second layer C1 to extract fewer numbers of features with better distinctiveness, and use binary string to describe the image patches extracted around detected corners, then use hamming distance for matching between two patches in the third layer S2, which is much faster than Euclidean method. Experimental results demonstrate that our proposed B-HMAX model can significantly reduce the total process time, while keeping the accuracy performance as the same with or better than standard HMAX.