Chanmi Park, Jung Yeon Lee, Hyoung Woo Baek, Hae-Sung Lee, Jeehang Lee, Jinwoo Kim
{"title":"基于生长和回归隐喻的会话智能体寿命设计及其对机器人智能的自然监督","authors":"Chanmi Park, Jung Yeon Lee, Hyoung Woo Baek, Hae-Sung Lee, Jeehang Lee, Jinwoo Kim","doi":"10.1109/HRI.2019.8673212","DOIUrl":null,"url":null,"abstract":"Human's direct supervision on robot's erroneous behavior is crucial to enhance a robot intelligence for a ‘flawless’ human-robot interaction. Motivating humans to engage more actively for this purpose is however difficult. To alleviate such strain, this research proposes a novel approach, a growth and regression metaphoric interaction design inspired from human's communicative, intellectual, social competence aspect of developmental stages. We implemented the interaction design principle unto a conversational agent combined with a set of synthetic sensors. Within this context, we aim to show that the agent successfully encourages the online labeling activity in response to the faulty behavior of robots as a supervision process. The field study is going to be conducted to evaluate the efficacy of our proposal by measuring the annotation performance of real-time activity events in the wild. We expect to provide a more effective and practical means to supervise robot by real-time data labeling process for long-term usage in the human-robot interaction.","PeriodicalId":6600,"journal":{"name":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","volume":"29 1","pages":"646-647"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifespan Design of Conversational Agent with Growth and Regression Metaphor for the Natural Supervision on Robot Intelligence\",\"authors\":\"Chanmi Park, Jung Yeon Lee, Hyoung Woo Baek, Hae-Sung Lee, Jeehang Lee, Jinwoo Kim\",\"doi\":\"10.1109/HRI.2019.8673212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human's direct supervision on robot's erroneous behavior is crucial to enhance a robot intelligence for a ‘flawless’ human-robot interaction. Motivating humans to engage more actively for this purpose is however difficult. To alleviate such strain, this research proposes a novel approach, a growth and regression metaphoric interaction design inspired from human's communicative, intellectual, social competence aspect of developmental stages. We implemented the interaction design principle unto a conversational agent combined with a set of synthetic sensors. Within this context, we aim to show that the agent successfully encourages the online labeling activity in response to the faulty behavior of robots as a supervision process. The field study is going to be conducted to evaluate the efficacy of our proposal by measuring the annotation performance of real-time activity events in the wild. We expect to provide a more effective and practical means to supervise robot by real-time data labeling process for long-term usage in the human-robot interaction.\",\"PeriodicalId\":6600,\"journal\":{\"name\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"volume\":\"29 1\",\"pages\":\"646-647\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HRI.2019.8673212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2019.8673212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lifespan Design of Conversational Agent with Growth and Regression Metaphor for the Natural Supervision on Robot Intelligence
Human's direct supervision on robot's erroneous behavior is crucial to enhance a robot intelligence for a ‘flawless’ human-robot interaction. Motivating humans to engage more actively for this purpose is however difficult. To alleviate such strain, this research proposes a novel approach, a growth and regression metaphoric interaction design inspired from human's communicative, intellectual, social competence aspect of developmental stages. We implemented the interaction design principle unto a conversational agent combined with a set of synthetic sensors. Within this context, we aim to show that the agent successfully encourages the online labeling activity in response to the faulty behavior of robots as a supervision process. The field study is going to be conducted to evaluate the efficacy of our proposal by measuring the annotation performance of real-time activity events in the wild. We expect to provide a more effective and practical means to supervise robot by real-time data labeling process for long-term usage in the human-robot interaction.