基于扩展回合模型的应用感知无死锁遗忘路由

Ali Shafiee, M. Zolghadr, M. Arjomand, H. Sarbazi-Azad
{"title":"基于扩展回合模型的应用感知无死锁遗忘路由","authors":"Ali Shafiee, M. Zolghadr, M. Arjomand, H. Sarbazi-Azad","doi":"10.1109/ICCAD.2011.6105328","DOIUrl":null,"url":null,"abstract":"Programmable hardware is gaining popularity as it can keep pace with growing performance demand in tight power budget, design and test cost, and serious reliability concerns of future multiprocessor embedded systems. Compatible with this trend, Network-on-Chip, as a potential bottleneck of future multi-cores, should also support pro-grammability. Here, we address this issue in design and implementation of routing algorithm for two-dimensional mesh. To this end, we allocate paths based on input traffic pattern and in parallel with customizing routing restriction for deadlock freedom. To achieve this, we propose extended turn model (ETM), a novel parametric deadlock-free routing for 2D meshes that generalize prior turn-based routing methods (e.g., odd-even) with great degree of freedoms. This model facilitates design of Mixed-Integer Linear Programming (MILP) approach, which considers channel dependency turns as independent variables and decides for both path allocation and routing restriction. We solve this problem by genetic algorithm and evaluate it using simulation experiments. Results reveal that application-aware ETM-based path allocation outperforms prior turn-based approaches under synthetic and real traffic loads.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Application-aware deadlock-free oblivious routing based on extended turn-model\",\"authors\":\"Ali Shafiee, M. Zolghadr, M. Arjomand, H. Sarbazi-Azad\",\"doi\":\"10.1109/ICCAD.2011.6105328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmable hardware is gaining popularity as it can keep pace with growing performance demand in tight power budget, design and test cost, and serious reliability concerns of future multiprocessor embedded systems. Compatible with this trend, Network-on-Chip, as a potential bottleneck of future multi-cores, should also support pro-grammability. Here, we address this issue in design and implementation of routing algorithm for two-dimensional mesh. To this end, we allocate paths based on input traffic pattern and in parallel with customizing routing restriction for deadlock freedom. To achieve this, we propose extended turn model (ETM), a novel parametric deadlock-free routing for 2D meshes that generalize prior turn-based routing methods (e.g., odd-even) with great degree of freedoms. This model facilitates design of Mixed-Integer Linear Programming (MILP) approach, which considers channel dependency turns as independent variables and decides for both path allocation and routing restriction. We solve this problem by genetic algorithm and evaluate it using simulation experiments. Results reveal that application-aware ETM-based path allocation outperforms prior turn-based approaches under synthetic and real traffic loads.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2011.6105328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

可编程硬件越来越受欢迎,因为它可以跟上日益增长的性能需求,在紧张的功率预算,设计和测试成本,以及未来多处理器嵌入式系统的严重可靠性问题。与这一趋势相适应,片上网络作为未来多核的潜在瓶颈,也应该支持可编程性。本文在二维网格路由算法的设计与实现中解决了这一问题。为此,我们根据输入流量模式分配路径,并与自定义路由限制并行,以实现死锁自由。为了实现这一目标,我们提出了扩展回合模型(ETM),这是一种新的2D网格参数无死锁路由方法,它以极大的自由度推广了先前基于回合的路由方法(例如奇偶)。该模型为混合整数线性规划(MILP)方法的设计提供了便利,该方法将信道依赖匝数作为自变量来决定路径分配和路由限制。采用遗传算法求解该问题,并用仿真实验对其进行了评价。结果表明,在综合和真实交通负载下,基于应用感知etm的路径分配优于先前基于回合的路径分配方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application-aware deadlock-free oblivious routing based on extended turn-model
Programmable hardware is gaining popularity as it can keep pace with growing performance demand in tight power budget, design and test cost, and serious reliability concerns of future multiprocessor embedded systems. Compatible with this trend, Network-on-Chip, as a potential bottleneck of future multi-cores, should also support pro-grammability. Here, we address this issue in design and implementation of routing algorithm for two-dimensional mesh. To this end, we allocate paths based on input traffic pattern and in parallel with customizing routing restriction for deadlock freedom. To achieve this, we propose extended turn model (ETM), a novel parametric deadlock-free routing for 2D meshes that generalize prior turn-based routing methods (e.g., odd-even) with great degree of freedoms. This model facilitates design of Mixed-Integer Linear Programming (MILP) approach, which considers channel dependency turns as independent variables and decides for both path allocation and routing restriction. We solve this problem by genetic algorithm and evaluate it using simulation experiments. Results reveal that application-aware ETM-based path allocation outperforms prior turn-based approaches under synthetic and real traffic loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for accelerating neuromorphic-vision algorithms on FPGAs Alternative design methodologies for the next generation logic switch Property-specific sequential invariant extraction for SAT-based unbounded model checking A corner stitching compliant B∗-tree representation and its applications to analog placement Heterogeneous B∗-trees for analog placement with symmetry and regularity considerations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1