基于自适应有限元分析的网格生成

E. Hinton, N.V.R. Rao, M. Özakça
{"title":"基于自适应有限元分析的网格生成","authors":"E. Hinton,&nbsp;N.V.R. Rao,&nbsp;M. Özakça","doi":"10.1016/0961-3552(91)90030-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with key aspects of the coupling of automatic mesh generation with adaptive analysis and shape optimisation of planar and surface structures. Adaptive analysis requires the design of nearly optimal meshes with varying element sizes to achieve a prescribed accuracy. In any shape optimisation process as the region to be discretised changes continuously and sometimes drastically, mesh generation should ideally take place without intervention by the analyst and without any excessive distortion of elements. To carry out these processes in a fully automatic and efficient manner a highly robust, versatile and flexible mesh generator is required. A brief introduction to the features of one such automatic mesh generator, based on the advancing front method, is described. Several examples are presented exploiting the potential of this mesh generator for adaptive analysis and shape optimisation. The integration of the mesh generation with these procedures well as some issues which required special attention.</p></div>","PeriodicalId":100044,"journal":{"name":"Advances in Engineering Software and Workstations","volume":"13 5","pages":"Pages 238-262"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-3552(91)90030-8","citationCount":"25","resultStr":"{\"title\":\"Mesh generation with adaptive finite element analysis\",\"authors\":\"E. Hinton,&nbsp;N.V.R. Rao,&nbsp;M. Özakça\",\"doi\":\"10.1016/0961-3552(91)90030-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with key aspects of the coupling of automatic mesh generation with adaptive analysis and shape optimisation of planar and surface structures. Adaptive analysis requires the design of nearly optimal meshes with varying element sizes to achieve a prescribed accuracy. In any shape optimisation process as the region to be discretised changes continuously and sometimes drastically, mesh generation should ideally take place without intervention by the analyst and without any excessive distortion of elements. To carry out these processes in a fully automatic and efficient manner a highly robust, versatile and flexible mesh generator is required. A brief introduction to the features of one such automatic mesh generator, based on the advancing front method, is described. Several examples are presented exploiting the potential of this mesh generator for adaptive analysis and shape optimisation. The integration of the mesh generation with these procedures well as some issues which required special attention.</p></div>\",\"PeriodicalId\":100044,\"journal\":{\"name\":\"Advances in Engineering Software and Workstations\",\"volume\":\"13 5\",\"pages\":\"Pages 238-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0961-3552(91)90030-8\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software and Workstations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0961355291900308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software and Workstations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0961355291900308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文讨论了自动网格生成与平面和表面结构的自适应分析和形状优化耦合的关键问题。自适应分析要求设计具有不同单元尺寸的近最佳网格,以达到规定的精度。在任何形状优化过程中,由于要离散的区域不断变化,有时甚至急剧变化,理想情况下,网格生成应该在没有分析人员干预的情况下进行,并且没有任何过度扭曲的元素。为了以全自动和高效的方式执行这些过程,需要高度健壮,通用和灵活的网格生成器。简要介绍了一种基于前向法的自动网格生成器的特点。提出了几个例子,利用这种网格生成器的潜力进行自适应分析和形状优化。网格生成与这些程序的结合以及一些需要特别注意的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesh generation with adaptive finite element analysis

This paper deals with key aspects of the coupling of automatic mesh generation with adaptive analysis and shape optimisation of planar and surface structures. Adaptive analysis requires the design of nearly optimal meshes with varying element sizes to achieve a prescribed accuracy. In any shape optimisation process as the region to be discretised changes continuously and sometimes drastically, mesh generation should ideally take place without intervention by the analyst and without any excessive distortion of elements. To carry out these processes in a fully automatic and efficient manner a highly robust, versatile and flexible mesh generator is required. A brief introduction to the features of one such automatic mesh generator, based on the advancing front method, is described. Several examples are presented exploiting the potential of this mesh generator for adaptive analysis and shape optimisation. The integration of the mesh generation with these procedures well as some issues which required special attention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial GEOMPACK — a software package for the generation of meshes using geometric algorithms Mesh generation with adaptive finite element analysis Feature-based design and finite element mesh generation for functional surfaces A generic Delaunay triangulation algorithm for finite element meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1