K. Sankaran, K. Moors, Z. Tokei, C. Adelmann, G. Pourtois
{"title":"用于高级互连应用的金属MAX陶瓷从头开始筛选","authors":"K. Sankaran, K. Moors, Z. Tokei, C. Adelmann, G. Pourtois","doi":"10.1103/PhysRevMaterials.5.056002","DOIUrl":null,"url":null,"abstract":"The potential of a wide range of layered ternary carbide and nitride MAX phases as conductors in interconnect metal lines in advanced CMOS technology nodes has been evaluated using automated first principles simulations based on density functional theory. The resistivity scaling potential of these compounds, i.e. the sensitivity of their resistivity to reduced line dimensions, has been benchmarked against Cu and Ru by evaluating their transport properties within a semiclassical transport formalism. In addition, their cohesive energy has been assessed as a proxy for the resistance against electromigration and the need for diffusion barriers. The results indicate that numerous MAX phases show promise as conductors in interconnects of advanced CMOS technology nodes.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Ab initio\\n screening of metallic MAX ceramics for advanced interconnect applications\",\"authors\":\"K. Sankaran, K. Moors, Z. Tokei, C. Adelmann, G. Pourtois\",\"doi\":\"10.1103/PhysRevMaterials.5.056002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of a wide range of layered ternary carbide and nitride MAX phases as conductors in interconnect metal lines in advanced CMOS technology nodes has been evaluated using automated first principles simulations based on density functional theory. The resistivity scaling potential of these compounds, i.e. the sensitivity of their resistivity to reduced line dimensions, has been benchmarked against Cu and Ru by evaluating their transport properties within a semiclassical transport formalism. In addition, their cohesive energy has been assessed as a proxy for the resistance against electromigration and the need for diffusion barriers. The results indicate that numerous MAX phases show promise as conductors in interconnects of advanced CMOS technology nodes.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevMaterials.5.056002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevMaterials.5.056002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ab initio
screening of metallic MAX ceramics for advanced interconnect applications
The potential of a wide range of layered ternary carbide and nitride MAX phases as conductors in interconnect metal lines in advanced CMOS technology nodes has been evaluated using automated first principles simulations based on density functional theory. The resistivity scaling potential of these compounds, i.e. the sensitivity of their resistivity to reduced line dimensions, has been benchmarked against Cu and Ru by evaluating their transport properties within a semiclassical transport formalism. In addition, their cohesive energy has been assessed as a proxy for the resistance against electromigration and the need for diffusion barriers. The results indicate that numerous MAX phases show promise as conductors in interconnects of advanced CMOS technology nodes.