Davide di Summa, Yasmina Shields, V. Cappellesso, L. Ferrara, N. De Belie
{"title":"仿生3D打印血管网络的可持续性概况,以恢复混凝土的结构完整性","authors":"Davide di Summa, Yasmina Shields, V. Cappellesso, L. Ferrara, N. De Belie","doi":"10.1051/matecconf/202337806002","DOIUrl":null,"url":null,"abstract":"Among the various possibilities to tackle the issue of concrete damage within its structural service life, the biomimetic approach has favoured the development of innovative solutions such as the use of 3D printed vascular networks suitably incorporated into concrete structural elements to inject and convey the most suitable healing agent upon crack occurrence. These systems, able to cope with damage of different intensities, may lead to improvements of the structure’s durability, through the closure of cracks, and a consequent reduction of the frequency of major maintenance activities. The present work investigates the environmental sustainability of the aforesaid self-healing technology through a Life Cycle Assessment (LCA) analysis. The attention has been also focused on the 3D printing process of the network due to the key role that it could play, in terms of environmental burdens, when upscaled to real-life size applications. The case study of a beam healed by means of polyurethane injected through the network and exposed to a chloride environment is reported to better predict the potential improvements in terms of overall durability and consequent sustainability within the pre-defined service life.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The sustainability profile of a biomimetic 3D printed vascular network to restore the structural integrity of concrete\",\"authors\":\"Davide di Summa, Yasmina Shields, V. Cappellesso, L. Ferrara, N. De Belie\",\"doi\":\"10.1051/matecconf/202337806002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the various possibilities to tackle the issue of concrete damage within its structural service life, the biomimetic approach has favoured the development of innovative solutions such as the use of 3D printed vascular networks suitably incorporated into concrete structural elements to inject and convey the most suitable healing agent upon crack occurrence. These systems, able to cope with damage of different intensities, may lead to improvements of the structure’s durability, through the closure of cracks, and a consequent reduction of the frequency of major maintenance activities. The present work investigates the environmental sustainability of the aforesaid self-healing technology through a Life Cycle Assessment (LCA) analysis. The attention has been also focused on the 3D printing process of the network due to the key role that it could play, in terms of environmental burdens, when upscaled to real-life size applications. The case study of a beam healed by means of polyurethane injected through the network and exposed to a chloride environment is reported to better predict the potential improvements in terms of overall durability and consequent sustainability within the pre-defined service life.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337806002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337806002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The sustainability profile of a biomimetic 3D printed vascular network to restore the structural integrity of concrete
Among the various possibilities to tackle the issue of concrete damage within its structural service life, the biomimetic approach has favoured the development of innovative solutions such as the use of 3D printed vascular networks suitably incorporated into concrete structural elements to inject and convey the most suitable healing agent upon crack occurrence. These systems, able to cope with damage of different intensities, may lead to improvements of the structure’s durability, through the closure of cracks, and a consequent reduction of the frequency of major maintenance activities. The present work investigates the environmental sustainability of the aforesaid self-healing technology through a Life Cycle Assessment (LCA) analysis. The attention has been also focused on the 3D printing process of the network due to the key role that it could play, in terms of environmental burdens, when upscaled to real-life size applications. The case study of a beam healed by means of polyurethane injected through the network and exposed to a chloride environment is reported to better predict the potential improvements in terms of overall durability and consequent sustainability within the pre-defined service life.
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.