基于模糊的SDN-VANETs资源管理方法:可信性对可用边缘计算资源评估的影响

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of High Speed Networks Pub Date : 2021-01-01 DOI:10.3233/JHS-210650
Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, Makoto Ikeda, Keita Matsuo, L. Barolli
{"title":"基于模糊的SDN-VANETs资源管理方法:可信性对可用边缘计算资源评估的影响","authors":"Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, Makoto Ikeda, Keita Matsuo, L. Barolli","doi":"10.3233/JHS-210650","DOIUrl":null,"url":null,"abstract":"Vehicular Ad hoc Networks (VANETs) aim to improve the efficiency and safety of transportation systems by enabling communication between vehicles and roadside units, without relying on a central infrastructure. However, since there is a tremendous amount of data and significant number of resources to be dealt with, data and resource management become their major issues. Cloud, Fog and Edge computing, together with Software Defined Networking (SDN) are anticipated to provide flexibility, scalability and intelligence in VANETs while leveraging distributed processing environment. In this paper, we consider this architecture and implement and compare two Fuzzy-based Systems for Assessment of Neighboring Vehicles Processing Capability (FS-ANVPC1 and FS-ANVPC2) to determine the processing capability of neighboring vehicles in Software Defined Vehicular Ad hoc Networks (SDN-VANETs). The computational, networking and storage resources of vehicles comprise the Edge Computing resources in a layered Cloud-Fog-Edge architecture. A vehicle which needs additional resources to complete certain tasks and process various data can use the resources of the neighboring vehicles if the requirements to realize such operations are fulfilled. The proposed systems are used to assess the processing capability of each neighboring vehicle and based on the final value, it can be determined whether the edge layer can be used by the vehicles in need. FS-ANVPC1 takes into consideration the available resources of the neighboring vehicles and the predicted contact duration between them and the present vehicle, while FS-ANVPC2 includes in addition the vehicles trustworthiness value. Our systems take also into account the neighboring vehicles’ willingness to share their resources and determine the processing capability for each neighbor. We evaluate the proposed systems by computer simulations. The evaluation results show that FS-ANVPC1 decides that helpful neighboring vehicles are the ones that are predicted to be within the vehicle communication range for a while and have medium/large amount of available resources. FS-ANVPC2 considers the same neighboring vehicles as helpful neighbors only if they have at least a moderate trustworthiness value ( VT = 0.5). When VT is higher, FS-ANVPC2 takes into consideration also neighbors with less available resources.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"14 1","pages":"33-44"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A fuzzy-based approach for resource management in SDN-VANETs: Effect of trustworthiness on assessment of available edge computing resources\",\"authors\":\"Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, Makoto Ikeda, Keita Matsuo, L. Barolli\",\"doi\":\"10.3233/JHS-210650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular Ad hoc Networks (VANETs) aim to improve the efficiency and safety of transportation systems by enabling communication between vehicles and roadside units, without relying on a central infrastructure. However, since there is a tremendous amount of data and significant number of resources to be dealt with, data and resource management become their major issues. Cloud, Fog and Edge computing, together with Software Defined Networking (SDN) are anticipated to provide flexibility, scalability and intelligence in VANETs while leveraging distributed processing environment. In this paper, we consider this architecture and implement and compare two Fuzzy-based Systems for Assessment of Neighboring Vehicles Processing Capability (FS-ANVPC1 and FS-ANVPC2) to determine the processing capability of neighboring vehicles in Software Defined Vehicular Ad hoc Networks (SDN-VANETs). The computational, networking and storage resources of vehicles comprise the Edge Computing resources in a layered Cloud-Fog-Edge architecture. A vehicle which needs additional resources to complete certain tasks and process various data can use the resources of the neighboring vehicles if the requirements to realize such operations are fulfilled. The proposed systems are used to assess the processing capability of each neighboring vehicle and based on the final value, it can be determined whether the edge layer can be used by the vehicles in need. FS-ANVPC1 takes into consideration the available resources of the neighboring vehicles and the predicted contact duration between them and the present vehicle, while FS-ANVPC2 includes in addition the vehicles trustworthiness value. Our systems take also into account the neighboring vehicles’ willingness to share their resources and determine the processing capability for each neighbor. We evaluate the proposed systems by computer simulations. The evaluation results show that FS-ANVPC1 decides that helpful neighboring vehicles are the ones that are predicted to be within the vehicle communication range for a while and have medium/large amount of available resources. FS-ANVPC2 considers the same neighboring vehicles as helpful neighbors only if they have at least a moderate trustworthiness value ( VT = 0.5). When VT is higher, FS-ANVPC2 takes into consideration also neighbors with less available resources.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"14 1\",\"pages\":\"33-44\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JHS-210650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JHS-210650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

车辆自组织网络(VANETs)旨在通过在不依赖中央基础设施的情况下实现车辆和路边单元之间的通信来提高运输系统的效率和安全性。然而,由于有大量的数据和大量的资源需要处理,数据和资源管理成为他们的主要问题。云、雾和边缘计算以及软件定义网络(SDN)有望在利用分布式处理环境的同时,为vanet提供灵活性、可扩展性和智能。在本文中,我们考虑这种架构,实现并比较了两种基于模糊的相邻车辆处理能力评估系统(FS-ANVPC1和FS-ANVPC2),以确定软件定义车辆自组织网络(SDN-VANETs)中相邻车辆的处理能力。车辆的计算、网络和存储资源构成了云雾边缘(Cloud-Fog-Edge)分层架构中的边缘计算资源。当车辆需要额外的资源来完成某些任务和处理各种数据时,如果满足实现这些操作的要求,则可以使用邻近车辆的资源。该系统用于评估每个相邻车辆的处理能力,并根据最终值确定边缘层是否可以被需要的车辆使用。FS-ANVPC1考虑了相邻车辆的可用资源以及它们与当前车辆的预测接触时间,而FS-ANVPC2还考虑了车辆的可信度值。我们的系统还考虑到相邻车辆共享资源的意愿,并确定每个相邻车辆的处理能力。我们通过计算机模拟来评估所提出的系统。评价结果表明,FS-ANVPC1判定有帮助的相邻车辆为预测在一段时间内处于车辆通信范围内且具有中/大量可用资源的车辆。FS-ANVPC2仅当相同的相邻车辆具有至少中等可信度值(VT = 0.5)时才将其视为有用的邻居。当VT较高时,FS-ANVPC2也会考虑可用资源较少的邻居。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fuzzy-based approach for resource management in SDN-VANETs: Effect of trustworthiness on assessment of available edge computing resources
Vehicular Ad hoc Networks (VANETs) aim to improve the efficiency and safety of transportation systems by enabling communication between vehicles and roadside units, without relying on a central infrastructure. However, since there is a tremendous amount of data and significant number of resources to be dealt with, data and resource management become their major issues. Cloud, Fog and Edge computing, together with Software Defined Networking (SDN) are anticipated to provide flexibility, scalability and intelligence in VANETs while leveraging distributed processing environment. In this paper, we consider this architecture and implement and compare two Fuzzy-based Systems for Assessment of Neighboring Vehicles Processing Capability (FS-ANVPC1 and FS-ANVPC2) to determine the processing capability of neighboring vehicles in Software Defined Vehicular Ad hoc Networks (SDN-VANETs). The computational, networking and storage resources of vehicles comprise the Edge Computing resources in a layered Cloud-Fog-Edge architecture. A vehicle which needs additional resources to complete certain tasks and process various data can use the resources of the neighboring vehicles if the requirements to realize such operations are fulfilled. The proposed systems are used to assess the processing capability of each neighboring vehicle and based on the final value, it can be determined whether the edge layer can be used by the vehicles in need. FS-ANVPC1 takes into consideration the available resources of the neighboring vehicles and the predicted contact duration between them and the present vehicle, while FS-ANVPC2 includes in addition the vehicles trustworthiness value. Our systems take also into account the neighboring vehicles’ willingness to share their resources and determine the processing capability for each neighbor. We evaluate the proposed systems by computer simulations. The evaluation results show that FS-ANVPC1 decides that helpful neighboring vehicles are the ones that are predicted to be within the vehicle communication range for a while and have medium/large amount of available resources. FS-ANVPC2 considers the same neighboring vehicles as helpful neighbors only if they have at least a moderate trustworthiness value ( VT = 0.5). When VT is higher, FS-ANVPC2 takes into consideration also neighbors with less available resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Speed Networks
Journal of High Speed Networks Computer Science-Computer Networks and Communications
CiteScore
1.80
自引率
11.10%
发文量
26
期刊介绍: The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge. The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity. The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.
期刊最新文献
Multitier scalable clustering wireless network design approach using honey bee ratel optimization Transmit antenna selection in M-MIMO system using metaheuristic aided model A comparison study of two implemented fuzzy-based models for decision of logical trust Research on fault detection and remote monitoring system of variable speed constant frequency wind turbine based on Internet of things Efficient dynamic IP datacasting mobility management based on LRS in mobile IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1